Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunin2 Unicode version

Theorem iunin2 3966
 Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 3955 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
iunin2
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem iunin2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 r19.42v 2694 . . . 4
2 elin 3358 . . . . 5
32rexbii 2568 . . . 4
4 eliun 3909 . . . . 5
54anbi2i 675 . . . 4
61, 3, 53bitr4i 268 . . 3
7 eliun 3909 . . 3
8 elin 3358 . . 3
96, 7, 83bitr4i 268 . 2
109eqriv 2280 1
 Colors of variables: wff set class Syntax hints:   wa 358   wceq 1623   wcel 1684  wrex 2544   cin 3151  ciun 3905 This theorem is referenced by:  iunin1  3967  2iunin  3970  resiundiOLD  4745  resiun1  4974  resiun2  4975  kmlem11  7786  cmpsublem  17126  cmpsub  17127  kgentopon  17233  metnrmlem3  18365  ovoliunlem1  18861  voliunlem1  18907  voliunlem2  18908  uniioombllem2  18938  uniioombllem4  18941  volsup2  18960  itg1addlem5  19055  itg1climres  19069  cvmscld  23804  isunscov  25074  heiborlem3  26537 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-v 2790  df-in 3159  df-iun 3907
 Copyright terms: Public domain W3C validator