MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunmbl Unicode version

Theorem iunmbl 18963
Description: The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
iunmbl  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  U_ n  e.  NN  A  e.  dom  vol )

Proof of Theorem iunmbl
Dummy variables  i 
k  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1610 . . . . 5  |-  F/ k  A  e.  dom  vol
2 nfcsb1v 3147 . . . . . 6  |-  F/_ n [_ k  /  n ]_ A
32nfel1 2462 . . . . 5  |-  F/ n [_ k  /  n ]_ A  e.  dom  vol
4 csbeq1a 3123 . . . . . 6  |-  ( n  =  k  ->  A  =  [_ k  /  n ]_ A )
54eleq1d 2382 . . . . 5  |-  ( n  =  k  ->  ( A  e.  dom  vol  <->  [_ k  /  n ]_ A  e.  dom  vol ) )
61, 3, 5cbvral 2794 . . . 4  |-  ( A. n  e.  NN  A  e.  dom  vol  <->  A. k  e.  NN  [_ k  /  n ]_ A  e.  dom  vol )
7 nfcv 2452 . . . . . . 7  |-  F/_ k A
87, 2, 4cbviun 3976 . . . . . 6  |-  U_ n  e.  NN  A  =  U_ k  e.  NN  [_ k  /  n ]_ A
9 csbeq1 3118 . . . . . . 7  |-  ( k  =  m  ->  [_ k  /  n ]_ A  = 
[_ m  /  n ]_ A )
109iundisj 18958 . . . . . 6  |-  U_ k  e.  NN  [_ k  /  n ]_ A  =  U_ k  e.  NN  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A )
118, 10eqtri 2336 . . . . 5  |-  U_ n  e.  NN  A  =  U_ k  e.  NN  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A )
12 difexg 4199 . . . . . . 7  |-  ( [_ k  /  n ]_ A  e.  dom  vol  ->  ( [_ k  /  n ]_ A  \ 
U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A
)  e.  _V )
1312ralimi 2652 . . . . . 6  |-  ( A. k  e.  NN  [_ k  /  n ]_ A  e. 
dom  vol  ->  A. k  e.  NN  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
)  e.  _V )
14 dfiun2g 3972 . . . . . 6  |-  ( A. k  e.  NN  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A )  e.  _V  ->  U_ k  e.  NN  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A )  =  U. { y  |  E. k  e.  NN  y  =  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
) } )
1513, 14syl 15 . . . . 5  |-  ( A. k  e.  NN  [_ k  /  n ]_ A  e. 
dom  vol  ->  U_ k  e.  NN  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
)  =  U. {
y  |  E. k  e.  NN  y  =  (
[_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A ) } )
1611, 15syl5eq 2360 . . . 4  |-  ( A. k  e.  NN  [_ k  /  n ]_ A  e. 
dom  vol  ->  U_ n  e.  NN  A  =  U. { y  |  E. k  e.  NN  y  =  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
) } )
176, 16sylbi 187 . . 3  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  U_ n  e.  NN  A  =  U. { y  |  E. k  e.  NN  y  =  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
) } )
18 eqid 2316 . . . . 5  |-  ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \ 
U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A
) )  =  ( k  e.  NN  |->  (
[_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A ) )
1918rnmpt 4962 . . . 4  |-  ran  (
k  e.  NN  |->  (
[_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A ) )  =  { y  |  E. k  e.  NN  y  =  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
) }
2019unieqi 3874 . . 3  |-  U. ran  ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A ) )  = 
U. { y  |  E. k  e.  NN  y  =  ( [_ k  /  n ]_ A  \ 
U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A
) }
2117, 20syl6eqr 2366 . 2  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  U_ n  e.  NN  A  =  U. ran  ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A ) ) )
223, 5rspc 2912 . . . . . 6  |-  ( k  e.  NN  ->  ( A. n  e.  NN  A  e.  dom  vol  ->  [_ k  /  n ]_ A  e.  dom  vol )
)
2322impcom 419 . . . . 5  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  k  e.  NN )  ->  [_ k  /  n ]_ A  e.  dom  vol )
24 fzofi 11083 . . . . . 6  |-  ( 1..^ k )  e.  Fin
25 nfv 1610 . . . . . . . . 9  |-  F/ m  A  e.  dom  vol
26 nfcsb1v 3147 . . . . . . . . . 10  |-  F/_ n [_ m  /  n ]_ A
2726nfel1 2462 . . . . . . . . 9  |-  F/ n [_ m  /  n ]_ A  e.  dom  vol
28 csbeq1a 3123 . . . . . . . . . 10  |-  ( n  =  m  ->  A  =  [_ m  /  n ]_ A )
2928eleq1d 2382 . . . . . . . . 9  |-  ( n  =  m  ->  ( A  e.  dom  vol  <->  [_ m  /  n ]_ A  e.  dom  vol ) )
3025, 27, 29cbvral 2794 . . . . . . . 8  |-  ( A. n  e.  NN  A  e.  dom  vol  <->  A. m  e.  NN  [_ m  /  n ]_ A  e.  dom  vol )
31 elfzouz 10926 . . . . . . . . . . 11  |-  ( m  e.  ( 1..^ k )  ->  m  e.  ( ZZ>= `  1 )
)
32 nnuz 10310 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
3331, 32syl6eleqr 2407 . . . . . . . . . 10  |-  ( m  e.  ( 1..^ k )  ->  m  e.  NN )
3433ssriv 3218 . . . . . . . . 9  |-  ( 1..^ k )  C_  NN
35 ssralv 3271 . . . . . . . . 9  |-  ( ( 1..^ k )  C_  NN  ->  ( A. m  e.  NN  [_ m  /  n ]_ A  e.  dom  vol 
->  A. m  e.  ( 1..^ k ) [_ m  /  n ]_ A  e.  dom  vol ) )
3634, 35ax-mp 8 . . . . . . . 8  |-  ( A. m  e.  NN  [_ m  /  n ]_ A  e. 
dom  vol  ->  A. m  e.  ( 1..^ k )
[_ m  /  n ]_ A  e.  dom  vol )
3730, 36sylbi 187 . . . . . . 7  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  A. m  e.  ( 1..^ k )
[_ m  /  n ]_ A  e.  dom  vol )
3837adantr 451 . . . . . 6  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  k  e.  NN )  ->  A. m  e.  ( 1..^ k ) [_ m  /  n ]_ A  e.  dom  vol )
39 finiunmbl 18954 . . . . . 6  |-  ( ( ( 1..^ k )  e.  Fin  /\  A. m  e.  ( 1..^ k ) [_ m  /  n ]_ A  e. 
dom  vol )  ->  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A  e.  dom  vol )
4024, 38, 39sylancr 644 . . . . 5  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  k  e.  NN )  ->  U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A  e.  dom  vol )
41 difmbl 18953 . . . . 5  |-  ( (
[_ k  /  n ]_ A  e.  dom  vol 
/\  U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A  e.  dom  vol )  -> 
( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A )  e.  dom  vol )
4223, 40, 41syl2anc 642 . . . 4  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  k  e.  NN )  ->  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A )  e.  dom  vol )
4342, 18fmptd 5722 . . 3  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \ 
U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A
) ) : NN --> dom  vol )
44 csbeq1 3118 . . . . 5  |-  ( i  =  m  ->  [_ i  /  n ]_ A  = 
[_ m  /  n ]_ A )
4544iundisj2 18959 . . . 4  |- Disj  i  e.  NN ( [_ i  /  n ]_ A  \  U_ m  e.  (
1..^ i ) [_ m  /  n ]_ A
)
46 simpr 447 . . . . . 6  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  i  e.  NN )  ->  i  e.  NN )
47 nfcsb1v 3147 . . . . . . . . . 10  |-  F/_ n [_ i  /  n ]_ A
4847nfel1 2462 . . . . . . . . 9  |-  F/ n [_ i  /  n ]_ A  e.  dom  vol
49 csbeq1a 3123 . . . . . . . . . 10  |-  ( n  =  i  ->  A  =  [_ i  /  n ]_ A )
5049eleq1d 2382 . . . . . . . . 9  |-  ( n  =  i  ->  ( A  e.  dom  vol  <->  [_ i  /  n ]_ A  e.  dom  vol ) )
5148, 50rspc 2912 . . . . . . . 8  |-  ( i  e.  NN  ->  ( A. n  e.  NN  A  e.  dom  vol  ->  [_ i  /  n ]_ A  e.  dom  vol )
)
5251impcom 419 . . . . . . 7  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  i  e.  NN )  ->  [_ i  /  n ]_ A  e.  dom  vol )
53 difexg 4199 . . . . . . 7  |-  ( [_ i  /  n ]_ A  e.  dom  vol  ->  ( [_ i  /  n ]_ A  \ 
U_ m  e.  ( 1..^ i ) [_ m  /  n ]_ A
)  e.  _V )
5452, 53syl 15 . . . . . 6  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  i  e.  NN )  ->  ( [_ i  /  n ]_ A  \  U_ m  e.  ( 1..^ i ) [_ m  /  n ]_ A )  e.  _V )
55 csbeq1 3118 . . . . . . . 8  |-  ( k  =  i  ->  [_ k  /  n ]_ A  = 
[_ i  /  n ]_ A )
56 oveq2 5908 . . . . . . . . 9  |-  ( k  =  i  ->  (
1..^ k )  =  ( 1..^ i ) )
5756iuneq1d 3965 . . . . . . . 8  |-  ( k  =  i  ->  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A  =  U_ m  e.  ( 1..^ i ) [_ m  /  n ]_ A )
5855, 57difeq12d 3329 . . . . . . 7  |-  ( k  =  i  ->  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A )  =  (
[_ i  /  n ]_ A  \  U_ m  e.  ( 1..^ i )
[_ m  /  n ]_ A ) )
5958, 18fvmptg 5638 . . . . . 6  |-  ( ( i  e.  NN  /\  ( [_ i  /  n ]_ A  \  U_ m  e.  ( 1..^ i )
[_ m  /  n ]_ A )  e.  _V )  ->  ( ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \ 
U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A
) ) `  i
)  =  ( [_ i  /  n ]_ A  \ 
U_ m  e.  ( 1..^ i ) [_ m  /  n ]_ A
) )
6046, 54, 59syl2anc 642 . . . . 5  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  i  e.  NN )  ->  ( ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
) ) `  i
)  =  ( [_ i  /  n ]_ A  \ 
U_ m  e.  ( 1..^ i ) [_ m  /  n ]_ A
) )
6160disjeq2dv 4035 . . . 4  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  (Disj  i  e.  NN ( ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \ 
U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A
) ) `  i
)  <-> Disj  i  e.  NN (
[_ i  /  n ]_ A  \  U_ m  e.  ( 1..^ i )
[_ m  /  n ]_ A ) ) )
6245, 61mpbiri 224 . . 3  |-  ( A. n  e.  NN  A  e.  dom  vol  -> Disj  i  e.  NN ( ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
) ) `  i
) )
63 eqid 2316 . . 3  |-  ( y  e.  NN  |->  ( vol
* `  ( x  i^i  ( ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
) ) `  y
) ) ) )  =  ( y  e.  NN  |->  ( vol * `  ( x  i^i  (
( k  e.  NN  |->  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A ) ) `  y ) ) ) )
6443, 62, 63voliunlem2 18961 . 2  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  U. ran  ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A ) )  e. 
dom  vol )
6521, 64eqeltrd 2390 1  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  U_ n  e.  NN  A  e.  dom  vol )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1633    e. wcel 1701   {cab 2302   A.wral 2577   E.wrex 2578   _Vcvv 2822   [_csb 3115    \ cdif 3183    i^i cin 3185    C_ wss 3186   U.cuni 3864   U_ciun 3942  Disj wdisj 4030    e. cmpt 4114   dom cdm 4726   ran crn 4727   ` cfv 5292  (class class class)co 5900   Fincfn 6906   1c1 8783   NNcn 9791   ZZ>=cuz 10277  ..^cfzo 10917   vol *covol 18875   volcvol 18876
This theorem is referenced by:  volsup  18966  iunmbl2  18967  vitalilem4  19019  vitalilem5  19020  ismbf3d  19062  itg2gt0  19168  voliune  23759
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-inf2 7387  ax-cc 8106  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859  ax-pre-sup 8860
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-disj 4031  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-se 4390  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-isom 5301  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-of 6120  df-1st 6164  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-1o 6521  df-2o 6522  df-oadd 6525  df-er 6702  df-map 6817  df-pm 6818  df-en 6907  df-dom 6908  df-sdom 6909  df-fin 6910  df-sup 7239  df-oi 7270  df-card 7617  df-cda 7839  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-nn 9792  df-2 9849  df-3 9850  df-n0 10013  df-z 10072  df-uz 10278  df-q 10364  df-rp 10402  df-xadd 10500  df-ioo 10707  df-ico 10709  df-icc 10710  df-fz 10830  df-fzo 10918  df-fl 10972  df-seq 11094  df-exp 11152  df-hash 11385  df-cj 11631  df-re 11632  df-im 11633  df-sqr 11767  df-abs 11768  df-clim 12009  df-rlim 12010  df-sum 12206  df-xmet 16425  df-met 16426  df-ovol 18877  df-vol 18878
  Copyright terms: Public domain W3C validator