MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunmbl Unicode version

Theorem iunmbl 18910
Description: The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
iunmbl  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  U_ n  e.  NN  A  e.  dom  vol )

Proof of Theorem iunmbl
Dummy variables  i 
k  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1605 . . . . 5  |-  F/ k  A  e.  dom  vol
2 nfcsb1v 3113 . . . . . 6  |-  F/_ n [_ k  /  n ]_ A
32nfel1 2429 . . . . 5  |-  F/ n [_ k  /  n ]_ A  e.  dom  vol
4 csbeq1a 3089 . . . . . 6  |-  ( n  =  k  ->  A  =  [_ k  /  n ]_ A )
54eleq1d 2349 . . . . 5  |-  ( n  =  k  ->  ( A  e.  dom  vol  <->  [_ k  /  n ]_ A  e.  dom  vol ) )
61, 3, 5cbvral 2760 . . . 4  |-  ( A. n  e.  NN  A  e.  dom  vol  <->  A. k  e.  NN  [_ k  /  n ]_ A  e.  dom  vol )
7 nfcv 2419 . . . . . . 7  |-  F/_ k A
87, 2, 4cbviun 3939 . . . . . 6  |-  U_ n  e.  NN  A  =  U_ k  e.  NN  [_ k  /  n ]_ A
9 csbeq1 3084 . . . . . . 7  |-  ( k  =  m  ->  [_ k  /  n ]_ A  = 
[_ m  /  n ]_ A )
109iundisj 18905 . . . . . 6  |-  U_ k  e.  NN  [_ k  /  n ]_ A  =  U_ k  e.  NN  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A )
118, 10eqtri 2303 . . . . 5  |-  U_ n  e.  NN  A  =  U_ k  e.  NN  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A )
12 difexg 4162 . . . . . . 7  |-  ( [_ k  /  n ]_ A  e.  dom  vol  ->  ( [_ k  /  n ]_ A  \ 
U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A
)  e.  _V )
1312ralimi 2618 . . . . . 6  |-  ( A. k  e.  NN  [_ k  /  n ]_ A  e. 
dom  vol  ->  A. k  e.  NN  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
)  e.  _V )
14 dfiun2g 3935 . . . . . 6  |-  ( A. k  e.  NN  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A )  e.  _V  ->  U_ k  e.  NN  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A )  =  U. { y  |  E. k  e.  NN  y  =  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
) } )
1513, 14syl 15 . . . . 5  |-  ( A. k  e.  NN  [_ k  /  n ]_ A  e. 
dom  vol  ->  U_ k  e.  NN  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
)  =  U. {
y  |  E. k  e.  NN  y  =  (
[_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A ) } )
1611, 15syl5eq 2327 . . . 4  |-  ( A. k  e.  NN  [_ k  /  n ]_ A  e. 
dom  vol  ->  U_ n  e.  NN  A  =  U. { y  |  E. k  e.  NN  y  =  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
) } )
176, 16sylbi 187 . . 3  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  U_ n  e.  NN  A  =  U. { y  |  E. k  e.  NN  y  =  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
) } )
18 eqid 2283 . . . . 5  |-  ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \ 
U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A
) )  =  ( k  e.  NN  |->  (
[_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A ) )
1918rnmpt 4925 . . . 4  |-  ran  (
k  e.  NN  |->  (
[_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A ) )  =  { y  |  E. k  e.  NN  y  =  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
) }
2019unieqi 3837 . . 3  |-  U. ran  ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A ) )  = 
U. { y  |  E. k  e.  NN  y  =  ( [_ k  /  n ]_ A  \ 
U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A
) }
2117, 20syl6eqr 2333 . 2  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  U_ n  e.  NN  A  =  U. ran  ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A ) ) )
223, 5rspc 2878 . . . . . 6  |-  ( k  e.  NN  ->  ( A. n  e.  NN  A  e.  dom  vol  ->  [_ k  /  n ]_ A  e.  dom  vol )
)
2322impcom 419 . . . . 5  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  k  e.  NN )  ->  [_ k  /  n ]_ A  e.  dom  vol )
24 fzofi 11036 . . . . . 6  |-  ( 1..^ k )  e.  Fin
25 nfv 1605 . . . . . . . . 9  |-  F/ m  A  e.  dom  vol
26 nfcsb1v 3113 . . . . . . . . . 10  |-  F/_ n [_ m  /  n ]_ A
2726nfel1 2429 . . . . . . . . 9  |-  F/ n [_ m  /  n ]_ A  e.  dom  vol
28 csbeq1a 3089 . . . . . . . . . 10  |-  ( n  =  m  ->  A  =  [_ m  /  n ]_ A )
2928eleq1d 2349 . . . . . . . . 9  |-  ( n  =  m  ->  ( A  e.  dom  vol  <->  [_ m  /  n ]_ A  e.  dom  vol ) )
3025, 27, 29cbvral 2760 . . . . . . . 8  |-  ( A. n  e.  NN  A  e.  dom  vol  <->  A. m  e.  NN  [_ m  /  n ]_ A  e.  dom  vol )
31 elfzouz 10879 . . . . . . . . . . 11  |-  ( m  e.  ( 1..^ k )  ->  m  e.  ( ZZ>= `  1 )
)
32 nnuz 10263 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
3331, 32syl6eleqr 2374 . . . . . . . . . 10  |-  ( m  e.  ( 1..^ k )  ->  m  e.  NN )
3433ssriv 3184 . . . . . . . . 9  |-  ( 1..^ k )  C_  NN
35 ssralv 3237 . . . . . . . . 9  |-  ( ( 1..^ k )  C_  NN  ->  ( A. m  e.  NN  [_ m  /  n ]_ A  e.  dom  vol 
->  A. m  e.  ( 1..^ k ) [_ m  /  n ]_ A  e.  dom  vol ) )
3634, 35ax-mp 8 . . . . . . . 8  |-  ( A. m  e.  NN  [_ m  /  n ]_ A  e. 
dom  vol  ->  A. m  e.  ( 1..^ k )
[_ m  /  n ]_ A  e.  dom  vol )
3730, 36sylbi 187 . . . . . . 7  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  A. m  e.  ( 1..^ k )
[_ m  /  n ]_ A  e.  dom  vol )
3837adantr 451 . . . . . 6  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  k  e.  NN )  ->  A. m  e.  ( 1..^ k ) [_ m  /  n ]_ A  e.  dom  vol )
39 finiunmbl 18901 . . . . . 6  |-  ( ( ( 1..^ k )  e.  Fin  /\  A. m  e.  ( 1..^ k ) [_ m  /  n ]_ A  e. 
dom  vol )  ->  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A  e.  dom  vol )
4024, 38, 39sylancr 644 . . . . 5  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  k  e.  NN )  ->  U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A  e.  dom  vol )
41 difmbl 18900 . . . . 5  |-  ( (
[_ k  /  n ]_ A  e.  dom  vol 
/\  U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A  e.  dom  vol )  -> 
( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A )  e.  dom  vol )
4223, 40, 41syl2anc 642 . . . 4  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  k  e.  NN )  ->  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A )  e.  dom  vol )
4342, 18fmptd 5684 . . 3  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \ 
U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A
) ) : NN --> dom  vol )
44 csbeq1 3084 . . . . 5  |-  ( i  =  m  ->  [_ i  /  n ]_ A  = 
[_ m  /  n ]_ A )
4544iundisj2 18906 . . . 4  |- Disj  i  e.  NN ( [_ i  /  n ]_ A  \  U_ m  e.  (
1..^ i ) [_ m  /  n ]_ A
)
46 simpr 447 . . . . . 6  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  i  e.  NN )  ->  i  e.  NN )
47 nfcsb1v 3113 . . . . . . . . . 10  |-  F/_ n [_ i  /  n ]_ A
4847nfel1 2429 . . . . . . . . 9  |-  F/ n [_ i  /  n ]_ A  e.  dom  vol
49 csbeq1a 3089 . . . . . . . . . 10  |-  ( n  =  i  ->  A  =  [_ i  /  n ]_ A )
5049eleq1d 2349 . . . . . . . . 9  |-  ( n  =  i  ->  ( A  e.  dom  vol  <->  [_ i  /  n ]_ A  e.  dom  vol ) )
5148, 50rspc 2878 . . . . . . . 8  |-  ( i  e.  NN  ->  ( A. n  e.  NN  A  e.  dom  vol  ->  [_ i  /  n ]_ A  e.  dom  vol )
)
5251impcom 419 . . . . . . 7  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  i  e.  NN )  ->  [_ i  /  n ]_ A  e.  dom  vol )
53 difexg 4162 . . . . . . 7  |-  ( [_ i  /  n ]_ A  e.  dom  vol  ->  ( [_ i  /  n ]_ A  \ 
U_ m  e.  ( 1..^ i ) [_ m  /  n ]_ A
)  e.  _V )
5452, 53syl 15 . . . . . 6  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  i  e.  NN )  ->  ( [_ i  /  n ]_ A  \  U_ m  e.  ( 1..^ i ) [_ m  /  n ]_ A )  e.  _V )
55 csbeq1 3084 . . . . . . . 8  |-  ( k  =  i  ->  [_ k  /  n ]_ A  = 
[_ i  /  n ]_ A )
56 oveq2 5866 . . . . . . . . 9  |-  ( k  =  i  ->  (
1..^ k )  =  ( 1..^ i ) )
5756iuneq1d 3928 . . . . . . . 8  |-  ( k  =  i  ->  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A  =  U_ m  e.  ( 1..^ i ) [_ m  /  n ]_ A )
5855, 57difeq12d 3295 . . . . . . 7  |-  ( k  =  i  ->  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A )  =  (
[_ i  /  n ]_ A  \  U_ m  e.  ( 1..^ i )
[_ m  /  n ]_ A ) )
5958, 18fvmptg 5600 . . . . . 6  |-  ( ( i  e.  NN  /\  ( [_ i  /  n ]_ A  \  U_ m  e.  ( 1..^ i )
[_ m  /  n ]_ A )  e.  _V )  ->  ( ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \ 
U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A
) ) `  i
)  =  ( [_ i  /  n ]_ A  \ 
U_ m  e.  ( 1..^ i ) [_ m  /  n ]_ A
) )
6046, 54, 59syl2anc 642 . . . . 5  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  i  e.  NN )  ->  ( ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
) ) `  i
)  =  ( [_ i  /  n ]_ A  \ 
U_ m  e.  ( 1..^ i ) [_ m  /  n ]_ A
) )
6160disjeq2dv 3998 . . . 4  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  (Disj  i  e.  NN ( ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \ 
U_ m  e.  ( 1..^ k ) [_ m  /  n ]_ A
) ) `  i
)  <-> Disj  i  e.  NN (
[_ i  /  n ]_ A  \  U_ m  e.  ( 1..^ i )
[_ m  /  n ]_ A ) ) )
6245, 61mpbiri 224 . . 3  |-  ( A. n  e.  NN  A  e.  dom  vol  -> Disj  i  e.  NN ( ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
) ) `  i
) )
63 eqid 2283 . . 3  |-  ( y  e.  NN  |->  ( vol
* `  ( x  i^i  ( ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \  U_ m  e.  (
1..^ k ) [_ m  /  n ]_ A
) ) `  y
) ) ) )  =  ( y  e.  NN  |->  ( vol * `  ( x  i^i  (
( k  e.  NN  |->  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A ) ) `  y ) ) ) )
6443, 62, 63voliunlem2 18908 . 2  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  U. ran  ( k  e.  NN  |->  ( [_ k  /  n ]_ A  \  U_ m  e.  ( 1..^ k )
[_ m  /  n ]_ A ) )  e. 
dom  vol )
6521, 64eqeltrd 2357 1  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  U_ n  e.  NN  A  e.  dom  vol )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   E.wrex 2544   _Vcvv 2788   [_csb 3081    \ cdif 3149    i^i cin 3151    C_ wss 3152   U.cuni 3827   U_ciun 3905  Disj wdisj 3993    e. cmpt 4077   dom cdm 4689   ran crn 4690   ` cfv 5255  (class class class)co 5858   Fincfn 6863   1c1 8738   NNcn 9746   ZZ>=cuz 10230  ..^cfzo 10870   vol *covol 18822   volcvol 18823
This theorem is referenced by:  volsup  18913  iunmbl2  18914  vitalilem4  18966  vitalilem5  18967  ismbf3d  19009  itg2gt0  19115
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xadd 10453  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-xmet 16373  df-met 16374  df-ovol 18824  df-vol 18825
  Copyright terms: Public domain W3C validator