MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunmbl2 Unicode version

Theorem iunmbl2 18967
Description: The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
iunmbl2  |-  ( ( A  ~<_  NN  /\  A. n  e.  A  B  e.  dom  vol )  ->  U_ n  e.  A  B  e.  dom  vol )
Distinct variable group:    A, n
Allowed substitution hint:    B( n)

Proof of Theorem iunmbl2
Dummy variables  f 
k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom2 6934 . . 3  |-  ( A  ~<_  NN  <->  ( A  ~<  NN  \/  A  ~~  NN ) )
2 nnenom 11089 . . . . . 6  |-  NN  ~~  om
3 sdomentr 7038 . . . . . 6  |-  ( ( A  ~<  NN  /\  NN  ~~ 
om )  ->  A  ~<  om )
42, 3mpan2 652 . . . . 5  |-  ( A 
~<  NN  ->  A  ~<  om )
5 isfinite 7398 . . . . . 6  |-  ( A  e.  Fin  <->  A  ~<  om )
6 finiunmbl 18954 . . . . . . 7  |-  ( ( A  e.  Fin  /\  A. n  e.  A  B  e.  dom  vol )  ->  U_ n  e.  A  B  e.  dom  vol )
76ex 423 . . . . . 6  |-  ( A  e.  Fin  ->  ( A. n  e.  A  B  e.  dom  vol  ->  U_ n  e.  A  B  e.  dom  vol ) )
85, 7sylbir 204 . . . . 5  |-  ( A 
~<  om  ->  ( A. n  e.  A  B  e.  dom  vol  ->  U_ n  e.  A  B  e.  dom  vol ) )
94, 8syl 15 . . . 4  |-  ( A 
~<  NN  ->  ( A. n  e.  A  B  e.  dom  vol  ->  U_ n  e.  A  B  e.  dom  vol ) )
10 bren 6914 . . . . 5  |-  ( A 
~~  NN  <->  E. f  f : A -1-1-onto-> NN )
11 nfv 1610 . . . . . . . . . . . . 13  |-  F/ n  f : A -1-1-onto-> NN
12 nfcv 2452 . . . . . . . . . . . . . 14  |-  F/_ n NN
13 nfcsb1v 3147 . . . . . . . . . . . . . . 15  |-  F/_ n [_ ( `' f `  k )  /  n ]_ B
1413nfel2 2464 . . . . . . . . . . . . . 14  |-  F/ n  x  e.  [_ ( `' f `  k )  /  n ]_ B
1512, 14nfrex 2632 . . . . . . . . . . . . 13  |-  F/ n E. k  e.  NN  x  e.  [_ ( `' f `  k )  /  n ]_ B
16 f1of 5510 . . . . . . . . . . . . . . . . 17  |-  ( f : A -1-1-onto-> NN  ->  f : A
--> NN )
17 ffvelrn 5701 . . . . . . . . . . . . . . . . 17  |-  ( ( f : A --> NN  /\  n  e.  A )  ->  ( f `  n
)  e.  NN )
1816, 17sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A )  ->  ( f `  n
)  e.  NN )
19183adant3 975 . . . . . . . . . . . . . . 15  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A  /\  x  e.  B )  ->  ( f `  n
)  e.  NN )
20 simp3 957 . . . . . . . . . . . . . . . 16  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A  /\  x  e.  B )  ->  x  e.  B )
21 f1ocnvfv1 5834 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A )  ->  ( `' f `  ( f `  n
) )  =  n )
22213adant3 975 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A  /\  x  e.  B )  ->  ( `' f `  ( f `  n
) )  =  n )
2322eqcomd 2321 . . . . . . . . . . . . . . . . 17  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A  /\  x  e.  B )  ->  n  =  ( `' f `  ( f `
 n ) ) )
24 csbeq1a 3123 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( `' f `
 ( f `  n ) )  ->  B  =  [_ ( `' f `  ( f `
 n ) )  /  n ]_ B
)
2523, 24syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A  /\  x  e.  B )  ->  B  =  [_ ( `' f `  (
f `  n )
)  /  n ]_ B )
2620, 25eleqtrd 2392 . . . . . . . . . . . . . . 15  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A  /\  x  e.  B )  ->  x  e.  [_ ( `' f `  (
f `  n )
)  /  n ]_ B )
27 fveq2 5563 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( f `  n )  ->  ( `' f `  k
)  =  ( `' f `  ( f `
 n ) ) )
2827csbeq1d 3121 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( f `  n )  ->  [_ ( `' f `  k
)  /  n ]_ B  =  [_ ( `' f `  ( f `
 n ) )  /  n ]_ B
)
2928eleq2d 2383 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( f `  n )  ->  (
x  e.  [_ ( `' f `  k
)  /  n ]_ B 
<->  x  e.  [_ ( `' f `  (
f `  n )
)  /  n ]_ B ) )
3029rspcev 2918 . . . . . . . . . . . . . . 15  |-  ( ( ( f `  n
)  e.  NN  /\  x  e.  [_ ( `' f `  ( f `
 n ) )  /  n ]_ B
)  ->  E. k  e.  NN  x  e.  [_ ( `' f `  k
)  /  n ]_ B )
3119, 26, 30syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A  /\  x  e.  B )  ->  E. k  e.  NN  x  e.  [_ ( `' f `  k )  /  n ]_ B
)
32313exp 1150 . . . . . . . . . . . . 13  |-  ( f : A -1-1-onto-> NN  ->  ( n  e.  A  ->  ( x  e.  B  ->  E. k  e.  NN  x  e.  [_ ( `' f `  k
)  /  n ]_ B ) ) )
3311, 15, 32rexlimd 2698 . . . . . . . . . . . 12  |-  ( f : A -1-1-onto-> NN  ->  ( E. n  e.  A  x  e.  B  ->  E. k  e.  NN  x  e.  [_ ( `' f `  k
)  /  n ]_ B ) )
34 f1ocnvdm 5838 . . . . . . . . . . . . . 14  |-  ( ( f : A -1-1-onto-> NN  /\  k  e.  NN )  ->  ( `' f `  k )  e.  A
)
35 csbeq1a 3123 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( `' f `
 k )  ->  B  =  [_ ( `' f `  k )  /  n ]_ B
)
3635eleq2d 2383 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( `' f `
 k )  -> 
( x  e.  B  <->  x  e.  [_ ( `' f `  k )  /  n ]_ B
) )
3714, 36rspce 2913 . . . . . . . . . . . . . . 15  |-  ( ( ( `' f `  k )  e.  A  /\  x  e.  [_ ( `' f `  k
)  /  n ]_ B )  ->  E. n  e.  A  x  e.  B )
3837ex 423 . . . . . . . . . . . . . 14  |-  ( ( `' f `  k
)  e.  A  -> 
( x  e.  [_ ( `' f `  k
)  /  n ]_ B  ->  E. n  e.  A  x  e.  B )
)
3934, 38syl 15 . . . . . . . . . . . . 13  |-  ( ( f : A -1-1-onto-> NN  /\  k  e.  NN )  ->  ( x  e.  [_ ( `' f `  k
)  /  n ]_ B  ->  E. n  e.  A  x  e.  B )
)
4039rexlimdva 2701 . . . . . . . . . . . 12  |-  ( f : A -1-1-onto-> NN  ->  ( E. k  e.  NN  x  e.  [_ ( `' f `
 k )  /  n ]_ B  ->  E. n  e.  A  x  e.  B ) )
4133, 40impbid 183 . . . . . . . . . . 11  |-  ( f : A -1-1-onto-> NN  ->  ( E. n  e.  A  x  e.  B  <->  E. k  e.  NN  x  e.  [_ ( `' f `  k )  /  n ]_ B
) )
42 eliun 3946 . . . . . . . . . . 11  |-  ( x  e.  U_ n  e.  A  B  <->  E. n  e.  A  x  e.  B )
43 eliun 3946 . . . . . . . . . . 11  |-  ( x  e.  U_ k  e.  NN  [_ ( `' f `  k )  /  n ]_ B  <->  E. k  e.  NN  x  e.  [_ ( `' f `
 k )  /  n ]_ B )
4441, 42, 433bitr4g 279 . . . . . . . . . 10  |-  ( f : A -1-1-onto-> NN  ->  ( x  e.  U_ n  e.  A  B 
<->  x  e.  U_ k  e.  NN  [_ ( `' f `  k )  /  n ]_ B
) )
4544eqrdv 2314 . . . . . . . . 9  |-  ( f : A -1-1-onto-> NN  ->  U_ n  e.  A  B  =  U_ k  e.  NN  [_ ( `' f `  k
)  /  n ]_ B )
4645adantr 451 . . . . . . . 8  |-  ( ( f : A -1-1-onto-> NN  /\  A. n  e.  A  B  e.  dom  vol )  ->  U_ n  e.  A  B  =  U_ k  e.  NN  [_ ( `' f `  k )  /  n ]_ B
)
47 rspcsbela 3174 . . . . . . . . . . . 12  |-  ( ( ( `' f `  k )  e.  A  /\  A. n  e.  A  B  e.  dom  vol )  ->  [_ ( `' f `
 k )  /  n ]_ B  e.  dom  vol )
4834, 47sylan 457 . . . . . . . . . . 11  |-  ( ( ( f : A -1-1-onto-> NN  /\  k  e.  NN )  /\  A. n  e.  A  B  e.  dom  vol )  ->  [_ ( `' f `  k )  /  n ]_ B  e.  dom  vol )
4948an32s 779 . . . . . . . . . 10  |-  ( ( ( f : A -1-1-onto-> NN  /\ 
A. n  e.  A  B  e.  dom  vol )  /\  k  e.  NN )  ->  [_ ( `' f `
 k )  /  n ]_ B  e.  dom  vol )
5049ralrimiva 2660 . . . . . . . . 9  |-  ( ( f : A -1-1-onto-> NN  /\  A. n  e.  A  B  e.  dom  vol )  ->  A. k  e.  NN  [_ ( `' f `  k )  /  n ]_ B  e.  dom  vol )
51 iunmbl 18963 . . . . . . . . 9  |-  ( A. k  e.  NN  [_ ( `' f `  k
)  /  n ]_ B  e.  dom  vol  ->  U_ k  e.  NN  [_ ( `' f `  k
)  /  n ]_ B  e.  dom  vol )
5250, 51syl 15 . . . . . . . 8  |-  ( ( f : A -1-1-onto-> NN  /\  A. n  e.  A  B  e.  dom  vol )  ->  U_ k  e.  NN  [_ ( `' f `  k )  /  n ]_ B  e.  dom  vol )
5346, 52eqeltrd 2390 . . . . . . 7  |-  ( ( f : A -1-1-onto-> NN  /\  A. n  e.  A  B  e.  dom  vol )  ->  U_ n  e.  A  B  e.  dom  vol )
5453ex 423 . . . . . 6  |-  ( f : A -1-1-onto-> NN  ->  ( A. n  e.  A  B  e.  dom  vol  ->  U_ n  e.  A  B  e.  dom  vol ) )
5554exlimiv 1625 . . . . 5  |-  ( E. f  f : A -1-1-onto-> NN  ->  ( A. n  e.  A  B  e.  dom  vol 
->  U_ n  e.  A  B  e.  dom  vol )
)
5610, 55sylbi 187 . . . 4  |-  ( A 
~~  NN  ->  ( A. n  e.  A  B  e.  dom  vol  ->  U_ n  e.  A  B  e.  dom  vol ) )
579, 56jaoi 368 . . 3  |-  ( ( A  ~<  NN  \/  A  ~~  NN )  -> 
( A. n  e.  A  B  e.  dom  vol 
->  U_ n  e.  A  B  e.  dom  vol )
)
581, 57sylbi 187 . 2  |-  ( A  ~<_  NN  ->  ( A. n  e.  A  B  e.  dom  vol  ->  U_ n  e.  A  B  e.  dom  vol ) )
5958imp 418 1  |-  ( ( A  ~<_  NN  /\  A. n  e.  A  B  e.  dom  vol )  ->  U_ n  e.  A  B  e.  dom  vol )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934   E.wex 1532    = wceq 1633    e. wcel 1701   A.wral 2577   E.wrex 2578   [_csb 3115   U_ciun 3942   class class class wbr 4060   omcom 4693   `'ccnv 4725   dom cdm 4726   -->wf 5288   -1-1-onto->wf1o 5291   ` cfv 5292    ~~ cen 6903    ~<_ cdom 6904    ~< csdm 6905   Fincfn 6906   NNcn 9791   volcvol 18876
This theorem is referenced by:  opnmblALT  19011  mbfimaopnlem  19063  mbfaddlem  19068  mbfsup  19072  dmvlsiga  23688
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-inf2 7387  ax-cc 8106  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859  ax-pre-sup 8860
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-disj 4031  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-se 4390  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-isom 5301  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-of 6120  df-1st 6164  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-1o 6521  df-2o 6522  df-oadd 6525  df-er 6702  df-map 6817  df-pm 6818  df-en 6907  df-dom 6908  df-sdom 6909  df-fin 6910  df-sup 7239  df-oi 7270  df-card 7617  df-cda 7839  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-nn 9792  df-2 9849  df-3 9850  df-n0 10013  df-z 10072  df-uz 10278  df-q 10364  df-rp 10402  df-xadd 10500  df-ioo 10707  df-ico 10709  df-icc 10710  df-fz 10830  df-fzo 10918  df-fl 10972  df-seq 11094  df-exp 11152  df-hash 11385  df-cj 11631  df-re 11632  df-im 11633  df-sqr 11767  df-abs 11768  df-clim 12009  df-rlim 12010  df-sum 12206  df-xmet 16425  df-met 16426  df-ovol 18877  df-vol 18878
  Copyright terms: Public domain W3C validator