Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunn0 Structured version   Unicode version

Theorem iunn0 4153
 Description: There is a non-empty class in an indexed collection iff the indexed union of them is non-empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunn0
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem iunn0
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 rexcom4 2977 . . 3
2 eliun 4099 . . . 4
32exbii 1593 . . 3
41, 3bitr4i 245 . 2
5 n0 3639 . . 3
65rexbii 2732 . 2
7 n0 3639 . 2
84, 6, 73bitr4i 270 1
 Colors of variables: wff set class Syntax hints:   wb 178  wex 1551   wcel 1726   wne 2601  wrex 2708  c0 3630  ciun 4095 This theorem is referenced by:  lbsextlem2  16236 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-v 2960  df-dif 3325  df-nul 3631  df-iun 4097
 Copyright terms: Public domain W3C validator