MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunocv Structured version   Unicode version

Theorem iunocv 16910
Description: The orthocomplement of an indexed union. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
inocv.o  |-  ._|_  =  ( ocv `  W )
iunocv.v  |-  V  =  ( Base `  W
)
Assertion
Ref Expression
iunocv  |-  (  ._|_  ` 
U_ x  e.  A  B )  =  ( V  i^i  |^|_ x  e.  A  (  ._|_  `  B ) )
Distinct variable groups:    x, V    x, W
Allowed substitution hints:    A( x)    B( x)   
._|_ ( x)

Proof of Theorem iunocv
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunss 4134 . . . . . . 7  |-  ( U_ x  e.  A  B  C_  V  <->  A. x  e.  A  B  C_  V )
2 eliun 4099 . . . . . . . . . . 11  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
32imbi1i 317 . . . . . . . . . 10  |-  ( ( y  e.  U_ x  e.  A  B  ->  ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) )  <->  ( E. x  e.  A  y  e.  B  ->  ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) ) )
4 r19.23v 2824 . . . . . . . . . 10  |-  ( A. x  e.  A  (
y  e.  B  -> 
( z ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) )  <->  ( E. x  e.  A  y  e.  B  ->  ( z ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) )
53, 4bitr4i 245 . . . . . . . . 9  |-  ( ( y  e.  U_ x  e.  A  B  ->  ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) )  <->  A. x  e.  A  ( y  e.  B  ->  ( z ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) ) )
65albii 1576 . . . . . . . 8  |-  ( A. y ( y  e. 
U_ x  e.  A  B  ->  ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) )  <->  A. y A. x  e.  A  ( y  e.  B  ->  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) )
7 df-ral 2712 . . . . . . . 8  |-  ( A. y  e.  U_  x  e.  A  B ( z ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) )  <->  A. y
( y  e.  U_ x  e.  A  B  ->  ( z ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) ) )
8 df-ral 2712 . . . . . . . . . 10  |-  ( A. y  e.  B  (
z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) )  <->  A. y ( y  e.  B  ->  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) )
98ralbii 2731 . . . . . . . . 9  |-  ( A. x  e.  A  A. y  e.  B  (
z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) )  <->  A. x  e.  A  A. y ( y  e.  B  ->  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) )
10 ralcom4 2976 . . . . . . . . 9  |-  ( A. x  e.  A  A. y ( y  e.  B  ->  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) )  <->  A. y A. x  e.  A  ( y  e.  B  ->  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) )
119, 10bitri 242 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  B  (
z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) )  <->  A. y A. x  e.  A  ( y  e.  B  ->  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) )
126, 7, 113bitr4i 270 . . . . . . 7  |-  ( A. y  e.  U_  x  e.  A  B ( z ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) )  <->  A. x  e.  A  A. y  e.  B  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) )
131, 12anbi12i 680 . . . . . 6  |-  ( (
U_ x  e.  A  B  C_  V  /\  A. y  e.  U_  x  e.  A  B ( z ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) )  <-> 
( A. x  e.  A  B  C_  V  /\  A. x  e.  A  A. y  e.  B  ( z ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) ) )
14 r19.26 2840 . . . . . 6  |-  ( A. x  e.  A  ( B  C_  V  /\  A. y  e.  B  (
z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) )  <->  ( A. x  e.  A  B  C_  V  /\  A. x  e.  A  A. y  e.  B  ( z ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) ) )
1513, 14bitr4i 245 . . . . 5  |-  ( (
U_ x  e.  A  B  C_  V  /\  A. y  e.  U_  x  e.  A  B ( z ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) )  <->  A. x  e.  A  ( B  C_  V  /\  A. y  e.  B  ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) ) )
16 eliin 4100 . . . . . 6  |-  ( z  e.  V  ->  (
z  e.  |^|_ x  e.  A  (  ._|_  `  B )  <->  A. x  e.  A  z  e.  (  ._|_  `  B )
) )
17 iunocv.v . . . . . . . . . 10  |-  V  =  ( Base `  W
)
18 eqid 2438 . . . . . . . . . 10  |-  ( .i
`  W )  =  ( .i `  W
)
19 eqid 2438 . . . . . . . . . 10  |-  (Scalar `  W )  =  (Scalar `  W )
20 eqid 2438 . . . . . . . . . 10  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
21 inocv.o . . . . . . . . . 10  |-  ._|_  =  ( ocv `  W )
2217, 18, 19, 20, 21elocv 16897 . . . . . . . . 9  |-  ( z  e.  (  ._|_  `  B
)  <->  ( B  C_  V  /\  z  e.  V  /\  A. y  e.  B  ( z ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) ) )
23 3anan12 950 . . . . . . . . 9  |-  ( ( B  C_  V  /\  z  e.  V  /\  A. y  e.  B  ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) )  <->  ( z  e.  V  /\  ( B 
C_  V  /\  A. y  e.  B  (
z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) ) ) )
2422, 23bitri 242 . . . . . . . 8  |-  ( z  e.  (  ._|_  `  B
)  <->  ( z  e.  V  /\  ( B 
C_  V  /\  A. y  e.  B  (
z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) ) ) )
2524baib 873 . . . . . . 7  |-  ( z  e.  V  ->  (
z  e.  (  ._|_  `  B )  <->  ( B  C_  V  /\  A. y  e.  B  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) ) )
2625ralbidv 2727 . . . . . 6  |-  ( z  e.  V  ->  ( A. x  e.  A  z  e.  (  ._|_  `  B )  <->  A. x  e.  A  ( B  C_  V  /\  A. y  e.  B  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) ) )
2716, 26bitr2d 247 . . . . 5  |-  ( z  e.  V  ->  ( A. x  e.  A  ( B  C_  V  /\  A. y  e.  B  ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) )  <->  z  e.  |^|_ x  e.  A  (  ._|_  `  B ) ) )
2815, 27syl5bb 250 . . . 4  |-  ( z  e.  V  ->  (
( U_ x  e.  A  B  C_  V  /\  A. y  e.  U_  x  e.  A  B ( z ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) )  <-> 
z  e.  |^|_ x  e.  A  (  ._|_  `  B ) ) )
2928pm5.32i 620 . . 3  |-  ( ( z  e.  V  /\  ( U_ x  e.  A  B  C_  V  /\  A. y  e.  U_  x  e.  A  B ( z ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) )  <->  ( z  e.  V  /\  z  e. 
|^|_ x  e.  A  (  ._|_  `  B )
) )
3017, 18, 19, 20, 21elocv 16897 . . . 4  |-  ( z  e.  (  ._|_  `  U_ x  e.  A  B )  <->  (
U_ x  e.  A  B  C_  V  /\  z  e.  V  /\  A. y  e.  U_  x  e.  A  B ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) ) )
31 3anan12 950 . . . 4  |-  ( (
U_ x  e.  A  B  C_  V  /\  z  e.  V  /\  A. y  e.  U_  x  e.  A  B ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) )  <-> 
( z  e.  V  /\  ( U_ x  e.  A  B  C_  V  /\  A. y  e.  U_  x  e.  A  B
( z ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) ) ) )
3230, 31bitri 242 . . 3  |-  ( z  e.  (  ._|_  `  U_ x  e.  A  B )  <->  ( z  e.  V  /\  ( U_ x  e.  A  B  C_  V  /\  A. y  e.  U_  x  e.  A  B ( z ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) ) )
33 elin 3532 . . 3  |-  ( z  e.  ( V  i^i  |^|_
x  e.  A  ( 
._|_  `  B ) )  <-> 
( z  e.  V  /\  z  e.  |^|_ x  e.  A  (  ._|_  `  B ) ) )
3429, 32, 333bitr4i 270 . 2  |-  ( z  e.  (  ._|_  `  U_ x  e.  A  B )  <->  z  e.  ( V  i^i  |^|_
x  e.  A  ( 
._|_  `  B ) ) )
3534eqriv 2435 1  |-  (  ._|_  ` 
U_ x  e.  A  B )  =  ( V  i^i  |^|_ x  e.  A  (  ._|_  `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937   A.wal 1550    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708    i^i cin 3321    C_ wss 3322   U_ciun 4095   |^|_ciin 4096   ` cfv 5456  (class class class)co 6083   Basecbs 13471  Scalarcsca 13534   .icip 13536   0gc0g 13725   ocvcocv 16889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-fv 5464  df-ov 6086  df-ocv 16892
  Copyright terms: Public domain W3C validator