MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunpw Structured version   Unicode version

Theorem iunpw 4751
Description: An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
Hypothesis
Ref Expression
iunpw.1  |-  A  e. 
_V
Assertion
Ref Expression
iunpw  |-  ( E. x  e.  A  x  =  U. A  <->  ~P U. A  =  U_ x  e.  A  ~P x )
Distinct variable group:    x, A

Proof of Theorem iunpw
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sseq2 3362 . . . . . . . 8  |-  ( x  =  U. A  -> 
( y  C_  x  <->  y 
C_  U. A ) )
21biimprcd 217 . . . . . . 7  |-  ( y 
C_  U. A  ->  (
x  =  U. A  ->  y  C_  x )
)
32reximdv 2809 . . . . . 6  |-  ( y 
C_  U. A  ->  ( E. x  e.  A  x  =  U. A  ->  E. x  e.  A  y  C_  x ) )
43com12 29 . . . . 5  |-  ( E. x  e.  A  x  =  U. A  -> 
( y  C_  U. A  ->  E. x  e.  A  y  C_  x ) )
5 ssiun 4125 . . . . . 6  |-  ( E. x  e.  A  y 
C_  x  ->  y  C_ 
U_ x  e.  A  x )
6 uniiun 4136 . . . . . 6  |-  U. A  =  U_ x  e.  A  x
75, 6syl6sseqr 3387 . . . . 5  |-  ( E. x  e.  A  y 
C_  x  ->  y  C_ 
U. A )
84, 7impbid1 195 . . . 4  |-  ( E. x  e.  A  x  =  U. A  -> 
( y  C_  U. A  <->  E. x  e.  A  y 
C_  x ) )
9 vex 2951 . . . . 5  |-  y  e. 
_V
109elpw 3797 . . . 4  |-  ( y  e.  ~P U. A  <->  y 
C_  U. A )
11 eliun 4089 . . . . 5  |-  ( y  e.  U_ x  e.  A  ~P x  <->  E. x  e.  A  y  e.  ~P x )
12 df-pw 3793 . . . . . . 7  |-  ~P x  =  { y  |  y 
C_  x }
1312abeq2i 2542 . . . . . 6  |-  ( y  e.  ~P x  <->  y  C_  x )
1413rexbii 2722 . . . . 5  |-  ( E. x  e.  A  y  e.  ~P x  <->  E. x  e.  A  y  C_  x )
1511, 14bitri 241 . . . 4  |-  ( y  e.  U_ x  e.  A  ~P x  <->  E. x  e.  A  y  C_  x )
168, 10, 153bitr4g 280 . . 3  |-  ( E. x  e.  A  x  =  U. A  -> 
( y  e.  ~P U. A  <->  y  e.  U_ x  e.  A  ~P x ) )
1716eqrdv 2433 . 2  |-  ( E. x  e.  A  x  =  U. A  ->  ~P U. A  =  U_ x  e.  A  ~P x )
18 ssid 3359 . . . . 5  |-  U. A  C_ 
U. A
19 iunpw.1 . . . . . . . 8  |-  A  e. 
_V
2019uniex 4697 . . . . . . 7  |-  U. A  e.  _V
2120elpw 3797 . . . . . 6  |-  ( U. A  e.  ~P U. A  <->  U. A  C_  U. A )
22 eleq2 2496 . . . . . 6  |-  ( ~P
U. A  =  U_ x  e.  A  ~P x  ->  ( U. A  e.  ~P U. A  <->  U. A  e. 
U_ x  e.  A  ~P x ) )
2321, 22syl5bbr 251 . . . . 5  |-  ( ~P
U. A  =  U_ x  e.  A  ~P x  ->  ( U. A  C_ 
U. A  <->  U. A  e. 
U_ x  e.  A  ~P x ) )
2418, 23mpbii 203 . . . 4  |-  ( ~P
U. A  =  U_ x  e.  A  ~P x  ->  U. A  e.  U_ x  e.  A  ~P x )
25 eliun 4089 . . . 4  |-  ( U. A  e.  U_ x  e.  A  ~P x  <->  E. x  e.  A  U. A  e. 
~P x )
2624, 25sylib 189 . . 3  |-  ( ~P
U. A  =  U_ x  e.  A  ~P x  ->  E. x  e.  A  U. A  e.  ~P x )
27 elssuni 4035 . . . . . . 7  |-  ( x  e.  A  ->  x  C_ 
U. A )
28 elpwi 3799 . . . . . . 7  |-  ( U. A  e.  ~P x  ->  U. A  C_  x
)
2927, 28anim12i 550 . . . . . 6  |-  ( ( x  e.  A  /\  U. A  e.  ~P x
)  ->  ( x  C_ 
U. A  /\  U. A  C_  x ) )
30 eqss 3355 . . . . . 6  |-  ( x  =  U. A  <->  ( x  C_ 
U. A  /\  U. A  C_  x ) )
3129, 30sylibr 204 . . . . 5  |-  ( ( x  e.  A  /\  U. A  e.  ~P x
)  ->  x  =  U. A )
3231ex 424 . . . 4  |-  ( x  e.  A  ->  ( U. A  e.  ~P x  ->  x  =  U. A ) )
3332reximia 2803 . . 3  |-  ( E. x  e.  A  U. A  e.  ~P x  ->  E. x  e.  A  x  =  U. A )
3426, 33syl 16 . 2  |-  ( ~P
U. A  =  U_ x  e.  A  ~P x  ->  E. x  e.  A  x  =  U. A )
3517, 34impbii 181 1  |-  ( E. x  e.  A  x  =  U. A  <->  ~P U. A  =  U_ x  e.  A  ~P x )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2698   _Vcvv 2948    C_ wss 3312   ~Pcpw 3791   U.cuni 4007   U_ciun 4085
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-v 2950  df-in 3319  df-ss 3326  df-pw 3793  df-uni 4008  df-iun 4087
  Copyright terms: Public domain W3C validator