MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunrab Unicode version

Theorem iunrab 3949
Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
iunrab  |-  U_ x  e.  A  { y  e.  B  |  ph }  =  { y  e.  B  |  E. x  e.  A  ph }
Distinct variable groups:    y, A    x, y    x, B
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem iunrab
StepHypRef Expression
1 iunab 3948 . 2  |-  U_ x  e.  A  { y  |  ( y  e.  B  /\  ph ) }  =  { y  |  E. x  e.  A  ( y  e.  B  /\  ph ) }
2 df-rab 2552 . . . 4  |-  { y  e.  B  |  ph }  =  { y  |  ( y  e.  B  /\  ph ) }
32a1i 10 . . 3  |-  ( x  e.  A  ->  { y  e.  B  |  ph }  =  { y  |  ( y  e.  B  /\  ph ) } )
43iuneq2i 3923 . 2  |-  U_ x  e.  A  { y  e.  B  |  ph }  =  U_ x  e.  A  { y  |  ( y  e.  B  /\  ph ) }
5 df-rab 2552 . . 3  |-  { y  e.  B  |  E. x  e.  A  ph }  =  { y  |  ( y  e.  B  /\  E. x  e.  A  ph ) }
6 r19.42v 2694 . . . 4  |-  ( E. x  e.  A  ( y  e.  B  /\  ph )  <->  ( y  e.  B  /\  E. x  e.  A  ph ) )
76abbii 2395 . . 3  |-  { y  |  E. x  e.  A  ( y  e.  B  /\  ph ) }  =  { y  |  ( y  e.  B  /\  E. x  e.  A  ph ) }
85, 7eqtr4i 2306 . 2  |-  { y  e.  B  |  E. x  e.  A  ph }  =  { y  |  E. x  e.  A  (
y  e.  B  /\  ph ) }
91, 4, 83eqtr4i 2313 1  |-  U_ x  e.  A  { y  e.  B  |  ph }  =  { y  e.  B  |  E. x  e.  A  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   E.wrex 2544   {crab 2547   U_ciun 3905
This theorem is referenced by:  incexc2  12297  itg2monolem1  19105  aannenlem1  19708  musum  20431  lgsquadlem1  20593  lgsquadlem2  20594  fiphp3d  26902  phisum  27518  mapdval3N  31821  mapdval5N  31823
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-in 3159  df-ss 3166  df-iun 3907
  Copyright terms: Public domain W3C validator