MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunss1 Structured version   Unicode version

Theorem iunss1 4096
Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunss1  |-  ( A 
C_  B  ->  U_ x  e.  A  C  C_  U_ x  e.  B  C )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iunss1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssrexv 3400 . . 3  |-  ( A 
C_  B  ->  ( E. x  e.  A  y  e.  C  ->  E. x  e.  B  y  e.  C ) )
2 eliun 4089 . . 3  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
3 eliun 4089 . . 3  |-  ( y  e.  U_ x  e.  B  C  <->  E. x  e.  B  y  e.  C )
41, 2, 33imtr4g 262 . 2  |-  ( A 
C_  B  ->  (
y  e.  U_ x  e.  A  C  ->  y  e.  U_ x  e.  B  C ) )
54ssrdv 3346 1  |-  ( A 
C_  B  ->  U_ x  e.  A  C  C_  U_ x  e.  B  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1725   E.wrex 2698    C_ wss 3312   U_ciun 4085
This theorem is referenced by:  iuneq1  4098  iunxdif2  4131  oelim2  6830  fsumiun  12592  ovolfiniun  19389  uniioovol  19463  volsupnfl  26241  usgreghash2spotv  28392  bnj1413  29341  bnj1408  29342
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-v 2950  df-in 3319  df-ss 3326  df-iun 4087
  Copyright terms: Public domain W3C validator