MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunun Unicode version

Theorem iunun 4105
Description: Separate a union in an indexed union. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iunun  |-  U_ x  e.  A  ( B  u.  C )  =  (
U_ x  e.  A  B  u.  U_ x  e.  A  C )

Proof of Theorem iunun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 r19.43 2799 . . . 4  |-  ( E. x  e.  A  ( y  e.  B  \/  y  e.  C )  <->  ( E. x  e.  A  y  e.  B  \/  E. x  e.  A  y  e.  C ) )
2 elun 3424 . . . . 5  |-  ( y  e.  ( B  u.  C )  <->  ( y  e.  B  \/  y  e.  C ) )
32rexbii 2667 . . . 4  |-  ( E. x  e.  A  y  e.  ( B  u.  C )  <->  E. x  e.  A  ( y  e.  B  \/  y  e.  C ) )
4 eliun 4032 . . . . 5  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
5 eliun 4032 . . . . 5  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
64, 5orbi12i 508 . . . 4  |-  ( ( y  e.  U_ x  e.  A  B  \/  y  e.  U_ x  e.  A  C )  <->  ( E. x  e.  A  y  e.  B  \/  E. x  e.  A  y  e.  C ) )
71, 3, 63bitr4i 269 . . 3  |-  ( E. x  e.  A  y  e.  ( B  u.  C )  <->  ( y  e.  U_ x  e.  A  B  \/  y  e.  U_ x  e.  A  C
) )
8 eliun 4032 . . 3  |-  ( y  e.  U_ x  e.  A  ( B  u.  C )  <->  E. x  e.  A  y  e.  ( B  u.  C
) )
9 elun 3424 . . 3  |-  ( y  e.  ( U_ x  e.  A  B  u.  U_ x  e.  A  C
)  <->  ( y  e. 
U_ x  e.  A  B  \/  y  e.  U_ x  e.  A  C
) )
107, 8, 93bitr4i 269 . 2  |-  ( y  e.  U_ x  e.  A  ( B  u.  C )  <->  y  e.  ( U_ x  e.  A  B  u.  U_ x  e.  A  C ) )
1110eqriv 2377 1  |-  U_ x  e.  A  ( B  u.  C )  =  (
U_ x  e.  A  B  u.  U_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    \/ wo 358    = wceq 1649    e. wcel 1717   E.wrex 2643    u. cun 3254   U_ciun 4028
This theorem is referenced by:  iununi  4109  oarec  6734  uniiccdif  19330  dftrpred4g  25254  comppfsc  26071  bnj1415  28738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ral 2647  df-rex 2648  df-v 2894  df-un 3261  df-iun 4030
  Copyright terms: Public domain W3C validator