MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxpconst Unicode version

Theorem iunxpconst 4762
Description: Membership in a union of cross products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
iunxpconst  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  ( A  X.  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem iunxpconst
StepHypRef Expression
1 xpiundir 4760 . 2  |-  ( U_ x  e.  A  {
x }  X.  B
)  =  U_ x  e.  A  ( {
x }  X.  B
)
2 iunid 3973 . . 3  |-  U_ x  e.  A  { x }  =  A
32xpeq1i 4725 . 2  |-  ( U_ x  e.  A  {
x }  X.  B
)  =  ( A  X.  B )
41, 3eqtr3i 2318 1  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  ( A  X.  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1632   {csn 3653   U_ciun 3921    X. cxp 4703
This theorem is referenced by:  ralxp  4843  rexxp  4844  mpt2mpt  5955  mpt2mpts  6204  fmpt2  6207  fsumxp  12251  dvfval  19263  indval2  23613  filnetlem3  26432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-iun 3923  df-opab 4094  df-xp 4711
  Copyright terms: Public domain W3C validator