Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ivthALT Unicode version

Theorem ivthALT 26361
Description: An alternate proof of the Intermediate Value Theorem ivth 18830 using topology. (Contributed by Jeff Hankins, 17-Aug-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
ivthALT  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  E. x  e.  ( A (,) B ) ( F `  x )  =  U )
Distinct variable groups:    x, A    x, B    x, D    x, F    x, U

Proof of Theorem ivthALT
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simp31 991 . . . . . 6  |-  ( ( ( A [,] B
)  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  F  e.  ( D -cn-> CC ) )
2 cncff 18413 . . . . . 6  |-  ( F  e.  ( D -cn-> CC )  ->  F : D
--> CC )
31, 2syl 15 . . . . 5  |-  ( ( ( A [,] B
)  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  F : D --> CC )
4 ffun 5407 . . . . 5  |-  ( F : D --> CC  ->  Fun 
F )
53, 4syl 15 . . . 4  |-  ( ( ( A [,] B
)  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  Fun  F )
653ad2ant3 978 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  Fun  F )
7 iccconn 18351 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( topGen `  ran  (,) )t  ( A [,] B
) )  e.  Con )
873adant3 975 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  ->  (
( topGen `  ran  (,) )t  ( A [,] B ) )  e.  Con )
983ad2ant1 976 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( topGen `  ran  (,) )t  ( A [,] B
) )  e.  Con )
10 simpr1 961 . . . . . . . . . . . . . 14  |-  ( ( D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  F  e.  ( D -cn-> CC ) )
1110, 2syl 15 . . . . . . . . . . . . 13  |-  ( ( D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  F : D --> CC )
1211anim2i 552 . . . . . . . . . . . 12  |-  ( ( ( A [,] B
)  C_  D  /\  ( D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( A [,] B )  C_  D  /\  F : D --> CC ) )
13123impb 1147 . . . . . . . . . . 11  |-  ( ( ( A [,] B
)  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  (
( A [,] B
)  C_  D  /\  F : D --> CC ) )
14133ad2ant3 978 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( A [,] B )  C_  D  /\  F : D --> CC ) )
154adantl 452 . . . . . . . . . . 11  |-  ( ( ( A [,] B
)  C_  D  /\  F : D --> CC )  ->  Fun  F )
16 fdm 5409 . . . . . . . . . . . . 13  |-  ( F : D --> CC  ->  dom 
F  =  D )
1716sseq2d 3219 . . . . . . . . . . . 12  |-  ( F : D --> CC  ->  ( ( A [,] B
)  C_  dom  F  <->  ( A [,] B )  C_  D
) )
1817biimparc 473 . . . . . . . . . . 11  |-  ( ( ( A [,] B
)  C_  D  /\  F : D --> CC )  ->  ( A [,] B )  C_  dom  F )
1915, 18jca 518 . . . . . . . . . 10  |-  ( ( ( A [,] B
)  C_  D  /\  F : D --> CC )  ->  ( Fun  F  /\  ( A [,] B
)  C_  dom  F ) )
2014, 19syl 15 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( Fun  F  /\  ( A [,] B ) 
C_  dom  F )
)
21 fores 5476 . . . . . . . . 9  |-  ( ( Fun  F  /\  ( A [,] B )  C_  dom  F )  ->  ( F  |`  ( A [,] B ) ) : ( A [,] B
) -onto-> ( F "
( A [,] B
) ) )
2220, 21syl 15 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F  |`  ( A [,] B ) ) : ( A [,] B ) -onto-> ( F
" ( A [,] B ) ) )
23 retop 18286 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  e.  Top
24 simp332 1109 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F " ( A [,] B ) ) 
C_  RR )
25 uniretop 18287 . . . . . . . . . . 11  |-  RR  =  U. ( topGen `  ran  (,) )
2625restuni 16909 . . . . . . . . . 10  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( F
" ( A [,] B ) )  C_  RR )  ->  ( F
" ( A [,] B ) )  = 
U. ( ( topGen ` 
ran  (,) )t  ( F "
( A [,] B
) ) ) )
2723, 24, 26sylancr 644 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F " ( A [,] B ) )  =  U. ( (
topGen `  ran  (,) )t  ( F " ( A [,] B ) ) ) )
28 foeq3 5465 . . . . . . . . 9  |-  ( ( F " ( A [,] B ) )  =  U. ( (
topGen `  ran  (,) )t  ( F " ( A [,] B ) ) )  ->  ( ( F  |`  ( A [,] B
) ) : ( A [,] B )
-onto-> ( F " ( A [,] B ) )  <-> 
( F  |`  ( A [,] B ) ) : ( A [,] B ) -onto-> U. (
( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) ) ) )
2927, 28syl 15 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( F  |`  ( A [,] B ) ) : ( A [,] B ) -onto-> ( F " ( A [,] B ) )  <-> 
( F  |`  ( A [,] B ) ) : ( A [,] B ) -onto-> U. (
( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) ) ) )
3022, 29mpbid 201 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F  |`  ( A [,] B ) ) : ( A [,] B ) -onto-> U. (
( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) ) )
31 simp331 1108 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  F  e.  ( D -cn->
CC ) )
32 ssid 3210 . . . . . . . . . . . . . . 15  |-  CC  C_  CC
33 eqid 2296 . . . . . . . . . . . . . . . 16  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
34 eqid 2296 . . . . . . . . . . . . . . . 16  |-  ( (
TopOpen ` fld )t  D )  =  ( ( TopOpen ` fld )t  D )
3533cnfldtop 18309 . . . . . . . . . . . . . . . . . 18  |-  ( TopOpen ` fld )  e.  Top
3633cnfldtopon 18308 . . . . . . . . . . . . . . . . . . . 20  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
3736toponunii 16686 . . . . . . . . . . . . . . . . . . 19  |-  CC  =  U. ( TopOpen ` fld )
3837restid 13354 . . . . . . . . . . . . . . . . . 18  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
3935, 38ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
4039eqcomi 2300 . . . . . . . . . . . . . . . 16  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
4133, 34, 40cncfcn 18429 . . . . . . . . . . . . . . 15  |-  ( ( D  C_  CC  /\  CC  C_  CC )  ->  ( D -cn-> CC )  =  ( ( ( TopOpen ` fld )t  D )  Cn  ( TopOpen
` fld
) ) )
4232, 41mpan2 652 . . . . . . . . . . . . . 14  |-  ( D 
C_  CC  ->  ( D
-cn-> CC )  =  ( ( ( TopOpen ` fld )t  D )  Cn  ( TopOpen
` fld
) ) )
43423ad2ant2 977 . . . . . . . . . . . . 13  |-  ( ( ( A [,] B
)  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  ( D -cn-> CC )  =  ( ( ( TopOpen ` fld )t  D )  Cn  ( TopOpen
` fld
) ) )
44433ad2ant3 978 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( D -cn-> CC )  =  ( ( (
TopOpen ` fld )t  D )  Cn  ( TopOpen
` fld
) ) )
4531, 44eleqtrd 2372 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  F  e.  ( (
( TopOpen ` fld )t  D )  Cn  ( TopOpen
` fld
) ) )
46 simp31 991 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( A [,] B
)  C_  D )
47 simp32 992 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  D  C_  CC )
48 resttopon 16908 . . . . . . . . . . . . . 14  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  D  C_  CC )  ->  (
( TopOpen ` fld )t  D )  e.  (TopOn `  D ) )
4936, 47, 48sylancr 644 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( TopOpen ` fld )t  D )  e.  (TopOn `  D ) )
50 toponuni 16681 . . . . . . . . . . . . 13  |-  ( ( ( TopOpen ` fld )t  D )  e.  (TopOn `  D )  ->  D  =  U. ( ( TopOpen ` fld )t  D
) )
5149, 50syl 15 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  D  =  U. (
( TopOpen ` fld )t  D ) )
5246, 51sseqtrd 3227 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( A [,] B
)  C_  U. (
( TopOpen ` fld )t  D ) )
53 eqid 2296 . . . . . . . . . . . 12  |-  U. (
( TopOpen ` fld )t  D )  =  U. ( ( TopOpen ` fld )t  D )
5453cnrest 17029 . . . . . . . . . . 11  |-  ( ( F  e.  ( ( ( TopOpen ` fld )t  D )  Cn  ( TopOpen
` fld
) )  /\  ( A [,] B )  C_  U. ( ( TopOpen ` fld )t  D ) )  -> 
( F  |`  ( A [,] B ) )  e.  ( ( ( ( TopOpen ` fld )t  D )t  ( A [,] B ) )  Cn  ( TopOpen ` fld ) ) )
5545, 52, 54syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F  |`  ( A [,] B ) )  e.  ( ( ( ( TopOpen ` fld )t  D )t  ( A [,] B ) )  Cn  ( TopOpen ` fld ) ) )
5635a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( TopOpen ` fld )  e.  Top )
57 cnex 8834 . . . . . . . . . . . . . 14  |-  CC  e.  _V
58 ssexg 4176 . . . . . . . . . . . . . 14  |-  ( ( D  C_  CC  /\  CC  e.  _V )  ->  D  e.  _V )
5947, 57, 58sylancl 643 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  D  e.  _V )
60 restabs 16912 . . . . . . . . . . . . 13  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( A [,] B
)  C_  D  /\  D  e.  _V )  ->  ( ( ( TopOpen ` fld )t  D
)t  ( A [,] B
) )  =  ( ( TopOpen ` fld )t  ( A [,] B ) ) )
6156, 46, 59, 60syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( TopOpen ` fld )t  D
)t  ( A [,] B
) )  =  ( ( TopOpen ` fld )t  ( A [,] B ) ) )
62 iccssre 10747 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
63623adant3 975 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  ->  ( A [,] B )  C_  RR )
64633ad2ant1 976 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( A [,] B
)  C_  RR )
65 eqid 2296 . . . . . . . . . . . . . 14  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
6633, 65rerest 18326 . . . . . . . . . . . . 13  |-  ( ( A [,] B ) 
C_  RR  ->  ( (
TopOpen ` fld )t  ( A [,] B
) )  =  ( ( topGen `  ran  (,) )t  ( A [,] B ) ) )
6764, 66syl 15 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( TopOpen ` fld )t  ( A [,] B ) )  =  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) )
6861, 67eqtrd 2328 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( TopOpen ` fld )t  D
)t  ( A [,] B
) )  =  ( ( topGen `  ran  (,) )t  ( A [,] B ) ) )
6968oveq1d 5889 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( (
TopOpen ` fld )t  D )t  ( A [,] B ) )  Cn  ( TopOpen ` fld ) )  =  ( ( ( topGen `  ran  (,) )t  ( A [,] B
) )  Cn  ( TopOpen
` fld
) ) )
7055, 69eleqtrd 2372 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F  |`  ( A [,] B ) )  e.  ( ( (
topGen `  ran  (,) )t  ( A [,] B ) )  Cn  ( TopOpen ` fld ) ) )
7136a1i 10 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( TopOpen ` fld )  e.  (TopOn `  CC ) )
72 df-ima 4718 . . . . . . . . . . . 12  |-  ( F
" ( A [,] B ) )  =  ran  ( F  |`  ( A [,] B ) )
7372eqimss2i 3246 . . . . . . . . . . 11  |-  ran  ( F  |`  ( A [,] B ) )  C_  ( F " ( A [,] B ) )
7473a1i 10 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  ran  ( F  |`  ( A [,] B ) ) 
C_  ( F "
( A [,] B
) ) )
75 ax-resscn 8810 . . . . . . . . . . 11  |-  RR  C_  CC
7624, 75syl6ss 3204 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F " ( A [,] B ) ) 
C_  CC )
77 cnrest2 17030 . . . . . . . . . 10  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( F  |`  ( A [,] B ) ) 
C_  ( F "
( A [,] B
) )  /\  ( F " ( A [,] B ) )  C_  CC )  ->  ( ( F  |`  ( A [,] B ) )  e.  ( ( ( topGen ` 
ran  (,) )t  ( A [,] B ) )  Cn  ( TopOpen ` fld ) )  <->  ( F  |`  ( A [,] B
) )  e.  ( ( ( topGen `  ran  (,) )t  ( A [,] B
) )  Cn  (
( TopOpen ` fld )t  ( F "
( A [,] B
) ) ) ) ) )
7871, 74, 76, 77syl3anc 1182 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( F  |`  ( A [,] B ) )  e.  ( ( ( topGen `  ran  (,) )t  ( A [,] B ) )  Cn  ( TopOpen ` fld ) )  <->  ( F  |`  ( A [,] B
) )  e.  ( ( ( topGen `  ran  (,) )t  ( A [,] B
) )  Cn  (
( TopOpen ` fld )t  ( F "
( A [,] B
) ) ) ) ) )
7970, 78mpbid 201 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F  |`  ( A [,] B ) )  e.  ( ( (
topGen `  ran  (,) )t  ( A [,] B ) )  Cn  ( ( TopOpen ` fld )t  ( F " ( A [,] B ) ) ) ) )
8033, 65rerest 18326 . . . . . . . . . 10  |-  ( ( F " ( A [,] B ) ) 
C_  RR  ->  ( (
TopOpen ` fld )t  ( F " ( A [,] B ) ) )  =  ( (
topGen `  ran  (,) )t  ( F " ( A [,] B ) ) ) )
8124, 80syl 15 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( TopOpen ` fld )t  ( F "
( A [,] B
) ) )  =  ( ( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) ) )
8281oveq2d 5890 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( topGen ` 
ran  (,) )t  ( A [,] B ) )  Cn  ( ( TopOpen ` fld )t  ( F "
( A [,] B
) ) ) )  =  ( ( (
topGen `  ran  (,) )t  ( A [,] B ) )  Cn  ( ( topGen ` 
ran  (,) )t  ( F "
( A [,] B
) ) ) ) )
8379, 82eleqtrd 2372 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F  |`  ( A [,] B ) )  e.  ( ( (
topGen `  ran  (,) )t  ( A [,] B ) )  Cn  ( ( topGen ` 
ran  (,) )t  ( F "
( A [,] B
) ) ) ) )
84 eqid 2296 . . . . . . . 8  |-  U. (
( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) )  =  U. ( (
topGen `  ran  (,) )t  ( F " ( A [,] B ) ) )
8584cnconn 17164 . . . . . . 7  |-  ( ( ( ( topGen `  ran  (,) )t  ( A [,] B
) )  e.  Con  /\  ( F  |`  ( A [,] B ) ) : ( A [,] B ) -onto-> U. (
( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) )  /\  ( F  |`  ( A [,] B ) )  e.  ( ( ( topGen `  ran  (,) )t  ( A [,] B ) )  Cn  ( ( topGen ` 
ran  (,) )t  ( F "
( A [,] B
) ) ) ) )  ->  ( ( topGen `
 ran  (,) )t  ( F " ( A [,] B ) ) )  e.  Con )
869, 30, 83, 85syl3anc 1182 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) )  e.  Con )
87 reconn 18349 . . . . . . . . 9  |-  ( ( F " ( A [,] B ) ) 
C_  RR  ->  ( ( ( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) )  e.  Con  <->  A. x  e.  ( F " ( A [,] B ) ) A. y  e.  ( F " ( A [,] B ) ) ( x [,] y
)  C_  ( F " ( A [,] B
) ) ) )
88873ad2ant2 977 . . . . . . . 8  |-  ( ( F  e.  ( D
-cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) )  ->  ( (
( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) )  e.  Con  <->  A. x  e.  ( F " ( A [,] B ) ) A. y  e.  ( F " ( A [,] B ) ) ( x [,] y
)  C_  ( F " ( A [,] B
) ) ) )
89883ad2ant3 978 . . . . . . 7  |-  ( ( ( A [,] B
)  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  (
( ( topGen `  ran  (,) )t  ( F " ( A [,] B ) ) )  e.  Con  <->  A. x  e.  ( F " ( A [,] B ) ) A. y  e.  ( F " ( A [,] B ) ) ( x [,] y
)  C_  ( F " ( A [,] B
) ) ) )
90893ad2ant3 978 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( topGen ` 
ran  (,) )t  ( F "
( A [,] B
) ) )  e. 
Con 
<-> 
A. x  e.  ( F " ( A [,] B ) ) A. y  e.  ( F " ( A [,] B ) ) ( x [,] y
)  C_  ( F " ( A [,] B
) ) ) )
9186, 90mpbid 201 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  A. x  e.  ( F " ( A [,] B ) ) A. y  e.  ( F " ( A [,] B
) ) ( x [,] y )  C_  ( F " ( A [,] B ) ) )
92 simp11 985 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  A  e.  RR )
9392rexrd 8897 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  A  e.  RR* )
94 simp12 986 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  B  e.  RR )
9594rexrd 8897 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  B  e.  RR* )
96 ltle 8926 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
9796imp 418 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  B
)  ->  A  <_  B )
98973adantl3 1113 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B )  ->  A  <_  B
)
99983adant3 975 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  A  <_  B )
100 lbicc2 10768 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
10193, 95, 99, 100syl3anc 1182 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  A  e.  ( A [,] B ) )
102 funfvima2 5770 . . . . . . 7  |-  ( ( Fun  F  /\  ( A [,] B )  C_  dom  F )  ->  ( A  e.  ( A [,] B )  ->  ( F `  A )  e.  ( F " ( A [,] B ) ) ) )
10320, 101, 102sylc 56 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F `  A
)  e.  ( F
" ( A [,] B ) ) )
104 ubicc2 10769 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
10593, 95, 99, 104syl3anc 1182 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  B  e.  ( A [,] B ) )
106 funfvima2 5770 . . . . . . 7  |-  ( ( Fun  F  /\  ( A [,] B )  C_  dom  F )  ->  ( B  e.  ( A [,] B )  ->  ( F `  B )  e.  ( F " ( A [,] B ) ) ) )
10720, 105, 106sylc 56 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F `  B
)  e.  ( F
" ( A [,] B ) ) )
108 oveq1 5881 . . . . . . . 8  |-  ( x  =  ( F `  A )  ->  (
x [,] y )  =  ( ( F `
 A ) [,] y ) )
109108sseq1d 3218 . . . . . . 7  |-  ( x  =  ( F `  A )  ->  (
( x [,] y
)  C_  ( F " ( A [,] B
) )  <->  ( ( F `  A ) [,] y )  C_  ( F " ( A [,] B ) ) ) )
110 oveq2 5882 . . . . . . . 8  |-  ( y  =  ( F `  B )  ->  (
( F `  A
) [,] y )  =  ( ( F `
 A ) [,] ( F `  B
) ) )
111110sseq1d 3218 . . . . . . 7  |-  ( y  =  ( F `  B )  ->  (
( ( F `  A ) [,] y
)  C_  ( F " ( A [,] B
) )  <->  ( ( F `  A ) [,] ( F `  B
) )  C_  ( F " ( A [,] B ) ) ) )
112109, 111rspc2v 2903 . . . . . 6  |-  ( ( ( F `  A
)  e.  ( F
" ( A [,] B ) )  /\  ( F `  B )  e.  ( F "
( A [,] B
) ) )  -> 
( A. x  e.  ( F " ( A [,] B ) ) A. y  e.  ( F " ( A [,] B ) ) ( x [,] y
)  C_  ( F " ( A [,] B
) )  ->  (
( F `  A
) [,] ( F `
 B ) ) 
C_  ( F "
( A [,] B
) ) ) )
113103, 107, 112syl2anc 642 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( A. x  e.  ( F " ( A [,] B ) ) A. y  e.  ( F " ( A [,] B ) ) ( x [,] y
)  C_  ( F " ( A [,] B
) )  ->  (
( F `  A
) [,] ( F `
 B ) ) 
C_  ( F "
( A [,] B
) ) ) )
11491, 113mpd 14 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( F `  A ) [,] ( F `  B )
)  C_  ( F " ( A [,] B
) ) )
115 ioossicc 10751 . . . . . . . 8  |-  ( ( F `  A ) (,) ( F `  B ) )  C_  ( ( F `  A ) [,] ( F `  B )
)
116115sseli 3189 . . . . . . 7  |-  ( U  e.  ( ( F `
 A ) (,) ( F `  B
) )  ->  U  e.  ( ( F `  A ) [,] ( F `  B )
) )
1171163ad2ant3 978 . . . . . 6  |-  ( ( F  e.  ( D
-cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) )  ->  U  e.  ( ( F `  A ) [,] ( F `  B )
) )
1181173ad2ant3 978 . . . . 5  |-  ( ( ( A [,] B
)  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn->
CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) )  ->  U  e.  ( ( F `  A ) [,] ( F `  B )
) )
1191183ad2ant3 978 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  U  e.  ( ( F `  A ) [,] ( F `  B
) ) )
120114, 119sseldd 3194 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  U  e.  ( F " ( A [,] B
) ) )
121 fvelima 5590 . . 3  |-  ( ( Fun  F  /\  U  e.  ( F " ( A [,] B ) ) )  ->  E. x  e.  ( A [,] B
) ( F `  x )  =  U )
1226, 120, 121syl2anc 642 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  E. x  e.  ( A [,] B ) ( F `  x )  =  U )
123 simpl1 958 . . . . . . . 8  |-  ( ( ( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U )  ->  x  e.  RR* )
124123a1i 10 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U )  ->  x  e.  RR* ) )
125 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  ( F `  x )  =  U )
12624, 103sseldd 3194 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F `  A
)  e.  RR )
127 simp333 1110 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  U  e.  ( ( F `  A ) (,) ( F `  B
) ) )
128126rexrd 8897 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F `  A
)  e.  RR* )
12924, 107sseldd 3194 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F `  B
)  e.  RR )
130129rexrd 8897 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F `  B
)  e.  RR* )
131 elioo2 10713 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  A
)  e.  RR*  /\  ( F `  B )  e.  RR* )  ->  ( U  e.  ( ( F `  A ) (,) ( F `  B
) )  <->  ( U  e.  RR  /\  ( F `
 A )  < 
U  /\  U  <  ( F `  B ) ) ) )
132128, 130, 131syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( U  e.  ( ( F `  A
) (,) ( F `
 B ) )  <-> 
( U  e.  RR  /\  ( F `  A
)  <  U  /\  U  <  ( F `  B ) ) ) )
133127, 132mpbid 201 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( U  e.  RR  /\  ( F `  A
)  <  U  /\  U  <  ( F `  B ) ) )
134133simp2d 968 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( F `  A
)  <  U )
135126, 134gtned 8970 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  U  =/=  ( F `  A ) )
136135adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  U  =/=  ( F `  A )
)
137125, 136eqnetrd 2477 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  ( F `  x )  =/=  ( F `  A )
)
138137neneqd 2475 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  -.  ( F `  x )  =  ( F `  A ) )
139 fveq2 5541 . . . . . . . . . 10  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
140138, 139nsyl 113 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  -.  x  =  A )
141 simp13 987 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  U  e.  RR )
142133simp3d 969 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  U  <  ( F `  B ) )
143141, 142ltned 8971 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  U  =/=  ( F `  B ) )
144143adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  U  =/=  ( F `  B )
)
145125, 144eqnetrd 2477 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  ( F `  x )  =/=  ( F `  B )
)
146145neneqd 2475 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  -.  ( F `  x )  =  ( F `  B ) )
147 fveq2 5541 . . . . . . . . . 10  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
148146, 147nsyl 113 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  -.  x  =  B )
149 simprl3 1002 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )
150140, 148, 149ecase13d 26325 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B ) 
C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F
" ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  /\  ( ( x  e. 
RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) )  ->  ( A  < 
x  /\  x  <  B ) )
151150ex 423 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U )  -> 
( A  <  x  /\  x  <  B ) ) )
152124, 151jcad 519 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U )  -> 
( x  e.  RR*  /\  ( A  <  x  /\  x  <  B ) ) ) )
153 3anass 938 . . . . . 6  |-  ( ( x  e.  RR*  /\  A  <  x  /\  x  < 
B )  <->  ( x  e.  RR*  /\  ( A  <  x  /\  x  <  B ) ) )
154152, 153syl6ibr 218 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( ( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U )  -> 
( x  e.  RR*  /\  A  <  x  /\  x  <  B ) ) )
155 rexr 8893 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  RR* )
156 rexr 8893 . . . . . . . . 9  |-  ( B  e.  RR  ->  B  e.  RR* )
157 elicc3 26331 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A [,] B )  <->  ( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) ) ) )
158155, 156, 157syl2an 463 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) ) ) )
1591583adant3 975 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  ->  (
x  e.  ( A [,] B )  <->  ( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) ) ) )
1601593ad2ant1 976 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( x  e.  ( A [,] B )  <-> 
( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) ) ) )
161160anbi1d 685 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( x  e.  ( A [,] B
)  /\  ( F `  x )  =  U )  <->  ( ( x  e.  RR*  /\  A  <_  B  /\  ( x  =  A  \/  ( A  <  x  /\  x  <  B )  \/  x  =  B ) )  /\  ( F `  x )  =  U ) ) )
162 elioo1 10712 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A (,) B )  <->  ( x  e.  RR*  /\  A  < 
x  /\  x  <  B ) ) )
163155, 156, 162syl2an 463 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A (,) B )  <-> 
( x  e.  RR*  /\  A  <  x  /\  x  <  B ) ) )
1641633adant3 975 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  ->  (
x  e.  ( A (,) B )  <->  ( x  e.  RR*  /\  A  < 
x  /\  x  <  B ) ) )
1651643ad2ant1 976 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( x  e.  ( A (,) B )  <-> 
( x  e.  RR*  /\  A  <  x  /\  x  <  B ) ) )
166154, 161, 1653imtr4d 259 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( x  e.  ( A [,] B
)  /\  ( F `  x )  =  U )  ->  x  e.  ( A (,) B ) ) )
167 simpr 447 . . . . 5  |-  ( ( x  e.  ( A [,] B )  /\  ( F `  x )  =  U )  -> 
( F `  x
)  =  U )
168167a1i 10 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( x  e.  ( A [,] B
)  /\  ( F `  x )  =  U )  ->  ( F `  x )  =  U ) )
169166, 168jcad 519 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( ( x  e.  ( A [,] B
)  /\  ( F `  x )  =  U )  ->  ( x  e.  ( A (,) B
)  /\  ( F `  x )  =  U ) ) )
170169reximdv2 2665 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  -> 
( E. x  e.  ( A [,] B
) ( F `  x )  =  U  ->  E. x  e.  ( A (,) B ) ( F `  x
)  =  U ) )
171122, 170mpd 14 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn-> CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A
) (,) ( F `
 B ) ) ) ) )  ->  E. x  e.  ( A (,) B ) ( F `  x )  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    \/ w3o 933    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   U.cuni 3843   class class class wbr 4039   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708   Fun wfun 5265   -->wf 5267   -onto->wfo 5269   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   RR*cxr 8882    < clt 8883    <_ cle 8884   (,)cioo 10672   [,]cicc 10675   ↾t crest 13341   TopOpenctopn 13342   topGenctg 13358  ℂfldccnfld 16393   Topctop 16647  TopOnctopon 16648    Cn ccn 16970   Conccon 17153   -cn->ccncf 18396
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-plusg 13237  df-mulr 13238  df-starv 13239  df-tset 13243  df-ple 13244  df-ds 13246  df-rest 13343  df-topn 13344  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-cn 16973  df-cnp 16974  df-con 17154  df-xms 17901  df-ms 17902  df-cncf 18398
  Copyright terms: Public domain W3C validator