MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthicc Unicode version

Theorem ivthicc 18818
Description: The interval between any two points of a continuous real function is contained in the range of the function. Equivalently, the range of a continuous real function is convex. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ivthicc.1  |-  ( ph  ->  A  e.  RR )
ivthicc.2  |-  ( ph  ->  B  e.  RR )
ivthicc.3  |-  ( ph  ->  M  e.  ( A [,] B ) )
ivthicc.4  |-  ( ph  ->  N  e.  ( A [,] B ) )
ivthicc.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivthicc.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivthicc.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
Assertion
Ref Expression
ivthicc  |-  ( ph  ->  ( ( F `  M ) [,] ( F `  N )
)  C_  ran  F )
Distinct variable groups:    x, D    x, F    x, M    x, N    ph, x    x, A    x, B

Proof of Theorem ivthicc
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivthicc.3 . . . . . . . 8  |-  ( ph  ->  M  e.  ( A [,] B ) )
2 ivthicc.1 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
3 ivthicc.2 . . . . . . . . 9  |-  ( ph  ->  B  e.  RR )
4 elicc2 10715 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( M  e.  ( A [,] B )  <-> 
( M  e.  RR  /\  A  <_  M  /\  M  <_  B ) ) )
52, 3, 4syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( M  e.  ( A [,] B )  <-> 
( M  e.  RR  /\  A  <_  M  /\  M  <_  B ) ) )
61, 5mpbid 201 . . . . . . 7  |-  ( ph  ->  ( M  e.  RR  /\  A  <_  M  /\  M  <_  B ) )
76simp1d 967 . . . . . 6  |-  ( ph  ->  M  e.  RR )
8 ivthicc.4 . . . . . . . 8  |-  ( ph  ->  N  e.  ( A [,] B ) )
9 elicc2 10715 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( N  e.  ( A [,] B )  <-> 
( N  e.  RR  /\  A  <_  N  /\  N  <_  B ) ) )
102, 3, 9syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( N  e.  ( A [,] B )  <-> 
( N  e.  RR  /\  A  <_  N  /\  N  <_  B ) ) )
118, 10mpbid 201 . . . . . . 7  |-  ( ph  ->  ( N  e.  RR  /\  A  <_  N  /\  N  <_  B ) )
1211simp1d 967 . . . . . 6  |-  ( ph  ->  N  e.  RR )
137, 12lttri4d 8960 . . . . 5  |-  ( ph  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
1413adantr 451 . . . 4  |-  ( (
ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
15 simpll 730 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  ph )
167ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  M  e.  RR )
1712ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  N  e.  RR )
18 ivthicc.8 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
1918ralrimiva 2626 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
20 fveq2 5525 . . . . . . . . . . . . 13  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
2120eleq1d 2349 . . . . . . . . . . . 12  |-  ( x  =  M  ->  (
( F `  x
)  e.  RR  <->  ( F `  M )  e.  RR ) )
2221rspcv 2880 . . . . . . . . . . 11  |-  ( M  e.  ( A [,] B )  ->  ( A. x  e.  ( A [,] B ) ( F `  x )  e.  RR  ->  ( F `  M )  e.  RR ) )
231, 19, 22sylc 56 . . . . . . . . . 10  |-  ( ph  ->  ( F `  M
)  e.  RR )
24 fveq2 5525 . . . . . . . . . . . . 13  |-  ( x  =  N  ->  ( F `  x )  =  ( F `  N ) )
2524eleq1d 2349 . . . . . . . . . . . 12  |-  ( x  =  N  ->  (
( F `  x
)  e.  RR  <->  ( F `  N )  e.  RR ) )
2625rspcv 2880 . . . . . . . . . . 11  |-  ( N  e.  ( A [,] B )  ->  ( A. x  e.  ( A [,] B ) ( F `  x )  e.  RR  ->  ( F `  N )  e.  RR ) )
278, 19, 26sylc 56 . . . . . . . . . 10  |-  ( ph  ->  ( F `  N
)  e.  RR )
28 iccssre 10731 . . . . . . . . . 10  |-  ( ( ( F `  M
)  e.  RR  /\  ( F `  N )  e.  RR )  -> 
( ( F `  M ) [,] ( F `  N )
)  C_  RR )
2923, 27, 28syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  M ) [,] ( F `  N )
)  C_  RR )
3029sselda 3180 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  ->  y  e.  RR )
3130adantr 451 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  y  e.  RR )
32 simpr 447 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  M  <  N )
336simp2d 968 . . . . . . . . . 10  |-  ( ph  ->  A  <_  M )
3411simp3d 969 . . . . . . . . . 10  |-  ( ph  ->  N  <_  B )
35 iccss 10718 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  M  /\  N  <_  B
) )  ->  ( M [,] N )  C_  ( A [,] B ) )
362, 3, 33, 34, 35syl22anc 1183 . . . . . . . . 9  |-  ( ph  ->  ( M [,] N
)  C_  ( A [,] B ) )
37 ivthicc.5 . . . . . . . . 9  |-  ( ph  ->  ( A [,] B
)  C_  D )
3836, 37sstrd 3189 . . . . . . . 8  |-  ( ph  ->  ( M [,] N
)  C_  D )
3938ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  ( M [,] N )  C_  D )
40 ivthicc.7 . . . . . . . 8  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
4140ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  F  e.  ( D -cn-> CC ) )
4236sselda 3180 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  x  e.  ( A [,] B ) )
4342, 18syldan 456 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  ( F `  x )  e.  RR )
4415, 43sylan 457 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N
) ) )  /\  M  <  N )  /\  x  e.  ( M [,] N ) )  -> 
( F `  x
)  e.  RR )
45 elicc2 10715 . . . . . . . . . . 11  |-  ( ( ( F `  M
)  e.  RR  /\  ( F `  N )  e.  RR )  -> 
( y  e.  ( ( F `  M
) [,] ( F `
 N ) )  <-> 
( y  e.  RR  /\  ( F `  M
)  <_  y  /\  y  <_  ( F `  N ) ) ) )
4623, 27, 45syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  ( ( F `  M
) [,] ( F `
 N ) )  <-> 
( y  e.  RR  /\  ( F `  M
)  <_  y  /\  y  <_  ( F `  N ) ) ) )
4746biimpa 470 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  ->  (
y  e.  RR  /\  ( F `  M )  <_  y  /\  y  <_  ( F `  N
) ) )
48 3simpc 954 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  ( F `  M )  <_  y  /\  y  <_  ( F `  N
) )  ->  (
( F `  M
)  <_  y  /\  y  <_  ( F `  N ) ) )
4947, 48syl 15 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  ->  (
( F `  M
)  <_  y  /\  y  <_  ( F `  N ) ) )
5049adantr 451 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  (
( F `  M
)  <_  y  /\  y  <_  ( F `  N ) ) )
5116, 17, 31, 32, 39, 41, 44, 50ivthle 18816 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  E. z  e.  ( M [,] N
) ( F `  z )  =  y )
5238sselda 3180 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( M [,] N ) )  ->  z  e.  D )
53 cncff 18397 . . . . . . . . . . 11  |-  ( F  e.  ( D -cn-> CC )  ->  F : D
--> CC )
54 ffn 5389 . . . . . . . . . . 11  |-  ( F : D --> CC  ->  F  Fn  D )
5540, 53, 543syl 18 . . . . . . . . . 10  |-  ( ph  ->  F  Fn  D )
56 fnfvelrn 5662 . . . . . . . . . 10  |-  ( ( F  Fn  D  /\  z  e.  D )  ->  ( F `  z
)  e.  ran  F
)
5755, 56sylan 457 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  D )  ->  ( F `  z )  e.  ran  F )
58 eleq1 2343 . . . . . . . . 9  |-  ( ( F `  z )  =  y  ->  (
( F `  z
)  e.  ran  F  <->  y  e.  ran  F ) )
5957, 58syl5ibcom 211 . . . . . . . 8  |-  ( (
ph  /\  z  e.  D )  ->  (
( F `  z
)  =  y  -> 
y  e.  ran  F
) )
6052, 59syldan 456 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( M [,] N ) )  ->  ( ( F `  z )  =  y  ->  y  e. 
ran  F ) )
6160rexlimdva 2667 . . . . . 6  |-  ( ph  ->  ( E. z  e.  ( M [,] N
) ( F `  z )  =  y  ->  y  e.  ran  F ) )
6215, 51, 61sylc 56 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  y  e.  ran  F )
63 simplr 731 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  y  e.  ( ( F `  M ) [,] ( F `  N )
) )
64 simpr 447 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  M  =  N )
6564fveq2d 5529 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  ( F `  M )  =  ( F `  N ) )
6665oveq2d 5874 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  (
( F `  M
) [,] ( F `
 M ) )  =  ( ( F `
 M ) [,] ( F `  N
) ) )
6723rexrd 8881 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  M
)  e.  RR* )
6867ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  ( F `  M )  e.  RR* )
69 iccid 10701 . . . . . . . . . 10  |-  ( ( F `  M )  e.  RR*  ->  ( ( F `  M ) [,] ( F `  M ) )  =  { ( F `  M ) } )
7068, 69syl 15 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  (
( F `  M
) [,] ( F `
 M ) )  =  { ( F `
 M ) } )
7166, 70eqtr3d 2317 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  (
( F `  M
) [,] ( F `
 N ) )  =  { ( F `
 M ) } )
7263, 71eleqtrd 2359 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  y  e.  { ( F `  M ) } )
73 elsni 3664 . . . . . . 7  |-  ( y  e.  { ( F `
 M ) }  ->  y  =  ( F `  M ) )
7472, 73syl 15 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  y  =  ( F `  M ) )
7537, 1sseldd 3181 . . . . . . . 8  |-  ( ph  ->  M  e.  D )
76 fnfvelrn 5662 . . . . . . . 8  |-  ( ( F  Fn  D  /\  M  e.  D )  ->  ( F `  M
)  e.  ran  F
)
7755, 75, 76syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( F `  M
)  e.  ran  F
)
7877ad2antrr 706 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  ( F `  M )  e.  ran  F )
7974, 78eqeltrd 2357 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  y  e.  ran  F )
80 simpll 730 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  ph )
8112ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  N  e.  RR )
827ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  M  e.  RR )
8330adantr 451 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  y  e.  RR )
84 simpr 447 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  N  <  M )
8511simp2d 968 . . . . . . . . . 10  |-  ( ph  ->  A  <_  N )
866simp3d 969 . . . . . . . . . 10  |-  ( ph  ->  M  <_  B )
87 iccss 10718 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  N  /\  M  <_  B
) )  ->  ( N [,] M )  C_  ( A [,] B ) )
882, 3, 85, 86, 87syl22anc 1183 . . . . . . . . 9  |-  ( ph  ->  ( N [,] M
)  C_  ( A [,] B ) )
8988, 37sstrd 3189 . . . . . . . 8  |-  ( ph  ->  ( N [,] M
)  C_  D )
9089ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  ( N [,] M )  C_  D )
9140ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  F  e.  ( D -cn-> CC ) )
9288sselda 3180 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( N [,] M ) )  ->  x  e.  ( A [,] B ) )
9392, 18syldan 456 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( N [,] M ) )  ->  ( F `  x )  e.  RR )
9480, 93sylan 457 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N
) ) )  /\  N  <  M )  /\  x  e.  ( N [,] M ) )  -> 
( F `  x
)  e.  RR )
9549adantr 451 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  (
( F `  M
)  <_  y  /\  y  <_  ( F `  N ) ) )
9681, 82, 83, 84, 90, 91, 94, 95ivthle2 18817 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  E. z  e.  ( N [,] M
) ( F `  z )  =  y )
9789sselda 3180 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( N [,] M ) )  ->  z  e.  D )
9897, 59syldan 456 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( N [,] M ) )  ->  ( ( F `  z )  =  y  ->  y  e. 
ran  F ) )
9998rexlimdva 2667 . . . . . 6  |-  ( ph  ->  ( E. z  e.  ( N [,] M
) ( F `  z )  =  y  ->  y  e.  ran  F ) )
10080, 96, 99sylc 56 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  y  e.  ran  F )
10162, 79, 1003jaodan 1248 . . . 4  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  ( M  <  N  \/  M  =  N  \/  N  <  M ) )  -> 
y  e.  ran  F
)
10214, 101mpdan 649 . . 3  |-  ( (
ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  ->  y  e.  ran  F )
103102ex 423 . 2  |-  ( ph  ->  ( y  e.  ( ( F `  M
) [,] ( F `
 N ) )  ->  y  e.  ran  F ) )
104103ssrdv 3185 1  |-  ( ph  ->  ( ( F `  M ) [,] ( F `  N )
)  C_  ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    \/ w3o 933    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   {csn 3640   class class class wbr 4023   ran crn 4690    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   RR*cxr 8866    < clt 8867    <_ cle 8868   [,]cicc 10659   -cn->ccncf 18380
This theorem is referenced by:  evthicc2  18820
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cn 16957  df-cnp 16958  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382
  Copyright terms: Public domain W3C validator