MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthlem2 Unicode version

Theorem ivthlem2 19027
Description: Lemma for ivth 19029. Show that the supremum of  S cannot be less than  U. If it was, continuity of  F implies that there are points just above the supremum that are also less than  U, a contradiction. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivth.10  |-  S  =  { x  e.  ( A [,] B )  |  ( F `  x )  <_  U }
ivth.11  |-  C  =  sup ( S ,  RR ,  <  )
Assertion
Ref Expression
ivthlem2  |-  ( ph  ->  -.  ( F `  C )  <  U
)
Distinct variable groups:    x, B    x, D    x, F    ph, x    x, A    x, C    x, S    x, U

Proof of Theorem ivthlem2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.7 . . . . . 6  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
21adantr 451 . . . . 5  |-  ( (
ph  /\  ( F `  C )  <  U
)  ->  F  e.  ( D -cn-> CC ) )
3 ivth.5 . . . . . . 7  |-  ( ph  ->  ( A [,] B
)  C_  D )
4 ivth.11 . . . . . . . . 9  |-  C  =  sup ( S ,  RR ,  <  )
5 ivth.10 . . . . . . . . . . . . 13  |-  S  =  { x  e.  ( A [,] B )  |  ( F `  x )  <_  U }
6 ssrab2 3344 . . . . . . . . . . . . 13  |-  { x  e.  ( A [,] B
)  |  ( F `
 x )  <_  U }  C_  ( A [,] B )
75, 6eqsstri 3294 . . . . . . . . . . . 12  |-  S  C_  ( A [,] B )
8 ivth.1 . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  RR )
9 ivth.2 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  RR )
10 iccssre 10884 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
118, 9, 10syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( A [,] B
)  C_  RR )
127, 11syl5ss 3276 . . . . . . . . . . 11  |-  ( ph  ->  S  C_  RR )
13 ivth.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  U  e.  RR )
14 ivth.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  <  B )
15 ivth.8 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
16 ivth.9 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
178, 9, 13, 14, 3, 1, 15, 16, 5ivthlem1 19026 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  e.  S  /\  A. z  e.  S  z  <_  B ) )
1817simpld 445 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  S )
19 ne0i 3549 . . . . . . . . . . . 12  |-  ( A  e.  S  ->  S  =/=  (/) )
2018, 19syl 15 . . . . . . . . . . 11  |-  ( ph  ->  S  =/=  (/) )
2117simprd 449 . . . . . . . . . . . 12  |-  ( ph  ->  A. z  e.  S  z  <_  B )
22 breq2 4129 . . . . . . . . . . . . . 14  |-  ( x  =  B  ->  (
z  <_  x  <->  z  <_  B ) )
2322ralbidv 2648 . . . . . . . . . . . . 13  |-  ( x  =  B  ->  ( A. z  e.  S  z  <_  x  <->  A. z  e.  S  z  <_  B ) )
2423rspcev 2969 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  A. z  e.  S  z  <_  B )  ->  E. x  e.  RR  A. z  e.  S  z  <_  x )
259, 21, 24syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  E. x  e.  RR  A. z  e.  S  z  <_  x )
2612, 20, 253jca 1133 . . . . . . . . . 10  |-  ( ph  ->  ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. z  e.  S  z  <_  x ) )
27 suprcl 9861 . . . . . . . . . 10  |-  ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. z  e.  S  z  <_  x
)  ->  sup ( S ,  RR ,  <  )  e.  RR )
2826, 27syl 15 . . . . . . . . 9  |-  ( ph  ->  sup ( S ,  RR ,  <  )  e.  RR )
294, 28syl5eqel 2450 . . . . . . . 8  |-  ( ph  ->  C  e.  RR )
30 suprub 9862 . . . . . . . . . 10  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. z  e.  S  z  <_  x )  /\  A  e.  S )  ->  A  <_  sup ( S ,  RR ,  <  ) )
3126, 18, 30syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  A  <_  sup ( S ,  RR ,  <  ) )
3231, 4syl6breqr 4165 . . . . . . . 8  |-  ( ph  ->  A  <_  C )
33 suprleub 9865 . . . . . . . . . . 11  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. z  e.  S  z  <_  x )  /\  B  e.  RR )  ->  ( sup ( S ,  RR ,  <  )  <_  B  <->  A. z  e.  S  z  <_  B ) )
3426, 9, 33syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( sup ( S ,  RR ,  <  )  <_  B  <->  A. z  e.  S  z  <_  B ) )
3521, 34mpbird 223 . . . . . . . . 9  |-  ( ph  ->  sup ( S ,  RR ,  <  )  <_  B )
364, 35syl5eqbr 4158 . . . . . . . 8  |-  ( ph  ->  C  <_  B )
37 elicc2 10868 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )
388, 9, 37syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )
3929, 32, 36, 38mpbir3and 1136 . . . . . . 7  |-  ( ph  ->  C  e.  ( A [,] B ) )
403, 39sseldd 3267 . . . . . 6  |-  ( ph  ->  C  e.  D )
4140adantr 451 . . . . 5  |-  ( (
ph  /\  ( F `  C )  <  U
)  ->  C  e.  D )
4215ralrimiva 2711 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
43 fveq2 5632 . . . . . . . . . 10  |-  ( x  =  C  ->  ( F `  x )  =  ( F `  C ) )
4443eleq1d 2432 . . . . . . . . 9  |-  ( x  =  C  ->  (
( F `  x
)  e.  RR  <->  ( F `  C )  e.  RR ) )
4544rspcv 2965 . . . . . . . 8  |-  ( C  e.  ( A [,] B )  ->  ( A. x  e.  ( A [,] B ) ( F `  x )  e.  RR  ->  ( F `  C )  e.  RR ) )
4639, 42, 45sylc 56 . . . . . . 7  |-  ( ph  ->  ( F `  C
)  e.  RR )
47 difrp 10538 . . . . . . 7  |-  ( ( ( F `  C
)  e.  RR  /\  U  e.  RR )  ->  ( ( F `  C )  <  U  <->  ( U  -  ( F `
 C ) )  e.  RR+ ) )
4846, 13, 47syl2anc 642 . . . . . 6  |-  ( ph  ->  ( ( F `  C )  <  U  <->  ( U  -  ( F `
 C ) )  e.  RR+ ) )
4948biimpa 470 . . . . 5  |-  ( (
ph  /\  ( F `  C )  <  U
)  ->  ( U  -  ( F `  C ) )  e.  RR+ )
50 cncfi 18612 . . . . 5  |-  ( ( F  e.  ( D
-cn-> CC )  /\  C  e.  D  /\  ( U  -  ( F `  C ) )  e.  RR+ )  ->  E. z  e.  RR+  A. y  e.  D  ( ( abs `  ( y  -  C
) )  <  z  ->  ( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) ) ) )
512, 41, 49, 50syl3anc 1183 . . . 4  |-  ( (
ph  /\  ( F `  C )  <  U
)  ->  E. z  e.  RR+  A. y  e.  D  ( ( abs `  ( y  -  C
) )  <  z  ->  ( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) ) ) )
52 ssralv 3323 . . . . . . . 8  |-  ( ( A [,] B ) 
C_  D  ->  ( A. y  e.  D  ( ( abs `  (
y  -  C ) )  <  z  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) ) )  ->  A. y  e.  ( A [,] B ) ( ( abs `  (
y  -  C ) )  <  z  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) ) ) ) )
533, 52syl 15 . . . . . . 7  |-  ( ph  ->  ( A. y  e.  D  ( ( abs `  ( y  -  C
) )  <  z  ->  ( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) ) )  ->  A. y  e.  ( A [,] B ) ( ( abs `  (
y  -  C ) )  <  z  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) ) ) ) )
5453ad2antrr 706 . . . . . 6  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  ( A. y  e.  D  ( ( abs `  (
y  -  C ) )  <  z  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) ) )  ->  A. y  e.  ( A [,] B ) ( ( abs `  (
y  -  C ) )  <  z  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) ) ) ) )
559ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  B  e.  RR )
5629ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  C  e.  RR )
57 rphalfcl 10529 . . . . . . . . . . . . 13  |-  ( z  e.  RR+  ->  ( z  /  2 )  e.  RR+ )
5857adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  (
z  /  2 )  e.  RR+ )
5958rpred 10541 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  (
z  /  2 )  e.  RR )
6056, 59readdcld 9009 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  ( C  +  ( z  /  2 ) )  e.  RR )
61 ifcl 3690 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  ( C  +  (
z  /  2 ) )  e.  RR )  ->  if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) )  e.  RR )
6255, 60, 61syl2anc 642 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  if ( B  <_  ( C  +  ( z  / 
2 ) ) ,  B ,  ( C  +  ( z  / 
2 ) ) )  e.  RR )
638ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  A  e.  RR )
6432ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  A  <_  C )
6516simprd 449 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  U  <  ( F `
 B ) )
668rexrd 9028 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A  e.  RR* )
679rexrd 9028 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  B  e.  RR* )
688, 9, 14ltled 9114 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A  <_  B )
69 ubicc2 10906 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
7066, 67, 68, 69syl3anc 1183 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  B  e.  ( A [,] B ) )
71 fveq2 5632 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
7271eleq1d 2432 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  B  ->  (
( F `  x
)  e.  RR  <->  ( F `  B )  e.  RR ) )
7372rspcv 2965 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  ( A [,] B )  ->  ( A. x  e.  ( A [,] B ) ( F `  x )  e.  RR  ->  ( F `  B )  e.  RR ) )
7470, 42, 73sylc 56 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( F `  B
)  e.  RR )
75 lttr 9046 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  C
)  e.  RR  /\  U  e.  RR  /\  ( F `  B )  e.  RR )  ->  (
( ( F `  C )  <  U  /\  U  <  ( F `
 B ) )  ->  ( F `  C )  <  ( F `  B )
) )
7646, 13, 74, 75syl3anc 1183 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( F `
 C )  < 
U  /\  U  <  ( F `  B ) )  ->  ( F `  C )  <  ( F `  B )
) )
7765, 76mpan2d 655 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( F `  C )  <  U  ->  ( F `  C
)  <  ( F `  B ) ) )
7877imp 418 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( F `  C )  <  U
)  ->  ( F `  C )  <  ( F `  B )
)
7978adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  ( F `  C )  <  ( F `  B
) )
8046ltnrd 9100 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  -.  ( F `  C )  <  ( F `  C )
)
81 fveq2 5632 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  =  C  ->  ( F `  B )  =  ( F `  C ) )
8281breq2d 4137 . . . . . . . . . . . . . . . . . . 19  |-  ( B  =  C  ->  (
( F `  C
)  <  ( F `  B )  <->  ( F `  C )  <  ( F `  C )
) )
8382notbid 285 . . . . . . . . . . . . . . . . . 18  |-  ( B  =  C  ->  ( -.  ( F `  C
)  <  ( F `  B )  <->  -.  ( F `  C )  <  ( F `  C
) ) )
8480, 83syl5ibrcom 213 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( B  =  C  ->  -.  ( F `  C )  <  ( F `  B )
) )
8584necon2ad 2577 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( F `  C )  <  ( F `  B )  ->  B  =/=  C ) )
8685, 36jctild 527 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( F `  C )  <  ( F `  B )  ->  ( C  <_  B  /\  B  =/=  C
) ) )
8729, 9ltlend 9111 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C  <  B  <->  ( C  <_  B  /\  B  =/=  C ) ) )
8886, 87sylibrd 225 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( F `  C )  <  ( F `  B )  ->  C  <  B ) )
8988ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  (
( F `  C
)  <  ( F `  B )  ->  C  <  B ) )
9079, 89mpd 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  C  <  B )
9156, 58ltaddrpd 10570 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  C  <  ( C  +  ( z  /  2 ) ) )
92 breq2 4129 . . . . . . . . . . . . 13  |-  ( B  =  if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) )  -> 
( C  <  B  <->  C  <  if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) ) ) )
93 breq2 4129 . . . . . . . . . . . . 13  |-  ( ( C  +  ( z  /  2 ) )  =  if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) )  -> 
( C  <  ( C  +  ( z  /  2 ) )  <-> 
C  <  if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) ) ) )
9492, 93ifboth 3685 . . . . . . . . . . . 12  |-  ( ( C  <  B  /\  C  <  ( C  +  ( z  /  2
) ) )  ->  C  <  if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) ) )
9590, 91, 94syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  C  <  if ( B  <_ 
( C  +  ( z  /  2 ) ) ,  B , 
( C  +  ( z  /  2 ) ) ) )
9656, 62, 95ltled 9114 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  C  <_  if ( B  <_ 
( C  +  ( z  /  2 ) ) ,  B , 
( C  +  ( z  /  2 ) ) ) )
9763, 56, 62, 64, 96letrd 9120 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  A  <_  if ( B  <_ 
( C  +  ( z  /  2 ) ) ,  B , 
( C  +  ( z  /  2 ) ) ) )
98 min1 10669 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  ( C  +  (
z  /  2 ) )  e.  RR )  ->  if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) )  <_  B )
9955, 60, 98syl2anc 642 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  if ( B  <_  ( C  +  ( z  / 
2 ) ) ,  B ,  ( C  +  ( z  / 
2 ) ) )  <_  B )
100 elicc2 10868 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) )  e.  ( A [,] B
)  <->  ( if ( B  <_  ( C  +  ( z  / 
2 ) ) ,  B ,  ( C  +  ( z  / 
2 ) ) )  e.  RR  /\  A  <_  if ( B  <_ 
( C  +  ( z  /  2 ) ) ,  B , 
( C  +  ( z  /  2 ) ) )  /\  if ( B  <_  ( C  +  ( z  / 
2 ) ) ,  B ,  ( C  +  ( z  / 
2 ) ) )  <_  B ) ) )
1018, 9, 100syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) )  e.  ( A [,] B
)  <->  ( if ( B  <_  ( C  +  ( z  / 
2 ) ) ,  B ,  ( C  +  ( z  / 
2 ) ) )  e.  RR  /\  A  <_  if ( B  <_ 
( C  +  ( z  /  2 ) ) ,  B , 
( C  +  ( z  /  2 ) ) )  /\  if ( B  <_  ( C  +  ( z  / 
2 ) ) ,  B ,  ( C  +  ( z  / 
2 ) ) )  <_  B ) ) )
102101ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  ( if ( B  <_  ( C  +  ( z  /  2 ) ) ,  B ,  ( C  +  ( z  /  2 ) ) )  e.  ( A [,] B )  <->  ( if ( B  <_  ( C  +  ( z  / 
2 ) ) ,  B ,  ( C  +  ( z  / 
2 ) ) )  e.  RR  /\  A  <_  if ( B  <_ 
( C  +  ( z  /  2 ) ) ,  B , 
( C  +  ( z  /  2 ) ) )  /\  if ( B  <_  ( C  +  ( z  / 
2 ) ) ,  B ,  ( C  +  ( z  / 
2 ) ) )  <_  B ) ) )
10362, 97, 99, 102mpbir3and 1136 . . . . . . . 8  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  if ( B  <_  ( C  +  ( z  / 
2 ) ) ,  B ,  ( C  +  ( z  / 
2 ) ) )  e.  ( A [,] B ) )
10456, 62, 96abssubge0d 12121 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  ( abs `  ( if ( B  <_  ( C  +  ( z  / 
2 ) ) ,  B ,  ( C  +  ( z  / 
2 ) ) )  -  C ) )  =  ( if ( B  <_  ( C  +  ( z  / 
2 ) ) ,  B ,  ( C  +  ( z  / 
2 ) ) )  -  C ) )
105 rpre 10511 . . . . . . . . . . . . 13  |-  ( z  e.  RR+  ->  z  e.  RR )
106105adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  z  e.  RR )
10756, 106readdcld 9009 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  ( C  +  z )  e.  RR )
108 min2 10670 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  ( C  +  (
z  /  2 ) )  e.  RR )  ->  if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) )  <_ 
( C  +  ( z  /  2 ) ) )
10955, 60, 108syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  if ( B  <_  ( C  +  ( z  / 
2 ) ) ,  B ,  ( C  +  ( z  / 
2 ) ) )  <_  ( C  +  ( z  /  2
) ) )
110 rphalflt 10531 . . . . . . . . . . . . 13  |-  ( z  e.  RR+  ->  ( z  /  2 )  < 
z )
111110adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  (
z  /  2 )  <  z )
11259, 106, 56, 111ltadd2dd 9122 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  ( C  +  ( z  /  2 ) )  <  ( C  +  z ) )
11362, 60, 107, 109, 112lelttrd 9121 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  if ( B  <_  ( C  +  ( z  / 
2 ) ) ,  B ,  ( C  +  ( z  / 
2 ) ) )  <  ( C  +  z ) )
11462, 56, 106ltsubadd2d 9517 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  (
( if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) )  -  C )  <  z  <->  if ( B  <_  ( C  +  ( z  /  2 ) ) ,  B ,  ( C  +  ( z  /  2 ) ) )  <  ( C  +  z ) ) )
115113, 114mpbird 223 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  ( if ( B  <_  ( C  +  ( z  /  2 ) ) ,  B ,  ( C  +  ( z  /  2 ) ) )  -  C )  <  z )
116104, 115eqbrtrd 4145 . . . . . . . 8  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  ( abs `  ( if ( B  <_  ( C  +  ( z  / 
2 ) ) ,  B ,  ( C  +  ( z  / 
2 ) ) )  -  C ) )  <  z )
117 oveq1 5988 . . . . . . . . . . . 12  |-  ( y  =  if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) )  -> 
( y  -  C
)  =  ( if ( B  <_  ( C  +  ( z  /  2 ) ) ,  B ,  ( C  +  ( z  /  2 ) ) )  -  C ) )
118117fveq2d 5636 . . . . . . . . . . 11  |-  ( y  =  if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) )  -> 
( abs `  (
y  -  C ) )  =  ( abs `  ( if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) )  -  C ) ) )
119118breq1d 4135 . . . . . . . . . 10  |-  ( y  =  if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) )  -> 
( ( abs `  (
y  -  C ) )  <  z  <->  ( abs `  ( if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) )  -  C ) )  < 
z ) )
120 breq2 4129 . . . . . . . . . 10  |-  ( y  =  if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) )  -> 
( C  <  y  <->  C  <  if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) ) ) )
121119, 120anbi12d 691 . . . . . . . . 9  |-  ( y  =  if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) )  -> 
( ( ( abs `  ( y  -  C
) )  <  z  /\  C  <  y )  <-> 
( ( abs `  ( if ( B  <_  ( C  +  ( z  /  2 ) ) ,  B ,  ( C  +  ( z  /  2 ) ) )  -  C ) )  <  z  /\  C  <  if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) ) ) ) )
122121rspcev 2969 . . . . . . . 8  |-  ( ( if ( B  <_ 
( C  +  ( z  /  2 ) ) ,  B , 
( C  +  ( z  /  2 ) ) )  e.  ( A [,] B )  /\  ( ( abs `  ( if ( B  <_  ( C  +  ( z  /  2
) ) ,  B ,  ( C  +  ( z  /  2
) ) )  -  C ) )  < 
z  /\  C  <  if ( B  <_  ( C  +  ( z  /  2 ) ) ,  B ,  ( C  +  ( z  /  2 ) ) ) ) )  ->  E. y  e.  ( A [,] B ) ( ( abs `  (
y  -  C ) )  <  z  /\  C  <  y ) )
123103, 116, 95, 122syl12anc 1181 . . . . . . 7  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  E. y  e.  ( A [,] B
) ( ( abs `  ( y  -  C
) )  <  z  /\  C  <  y ) )
124 r19.29 2768 . . . . . . . 8  |-  ( ( A. y  e.  ( A [,] B ) ( ( abs `  (
y  -  C ) )  <  z  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) ) )  /\  E. y  e.  ( A [,] B
) ( ( abs `  ( y  -  C
) )  <  z  /\  C  <  y ) )  ->  E. y  e.  ( A [,] B
) ( ( ( abs `  ( y  -  C ) )  <  z  ->  ( abs `  ( ( F `
 y )  -  ( F `  C ) ) )  <  ( U  -  ( F `  C ) ) )  /\  ( ( abs `  ( y  -  C
) )  <  z  /\  C  <  y ) ) )
125 pm3.45 807 . . . . . . . . . . 11  |-  ( ( ( abs `  (
y  -  C ) )  <  z  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) ) )  ->  ( ( ( abs `  ( y  -  C ) )  <  z  /\  C  <  y )  ->  (
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) )  /\  C  <  y ) ) )
126125imp 418 . . . . . . . . . 10  |-  ( ( ( ( abs `  (
y  -  C ) )  <  z  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) ) )  /\  ( ( abs `  ( y  -  C
) )  <  z  /\  C  <  y ) )  ->  ( ( abs `  ( ( F `
 y )  -  ( F `  C ) ) )  <  ( U  -  ( F `  C ) )  /\  C  <  y ) )
127 simprr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  C  <  y )
128 simprl 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  y  e.  ( A [,] B
) )
129 simplll 734 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  ph )
130129, 42syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  A. x  e.  ( A [,] B
) ( F `  x )  e.  RR )
131 fveq2 5632 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
132131eleq1d 2432 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  y  ->  (
( F `  x
)  e.  RR  <->  ( F `  y )  e.  RR ) )
133132rspcv 2965 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( A [,] B )  ->  ( A. x  e.  ( A [,] B ) ( F `  x )  e.  RR  ->  ( F `  y )  e.  RR ) )
134128, 130, 133sylc 56 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  ( F `  y )  e.  RR )
135129, 46syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  ( F `  C )  e.  RR )
136129, 13syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  U  e.  RR )
137136, 135resubcld 9358 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  ( U  -  ( F `  C ) )  e.  RR )
138134, 135, 137absdifltd 12123 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  (
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) )  <->  ( (
( F `  C
)  -  ( U  -  ( F `  C ) ) )  <  ( F `  y )  /\  ( F `  y )  <  ( ( F `  C )  +  ( U  -  ( F `
 C ) ) ) ) ) )
139 ltle 9057 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F `  y
)  e.  RR  /\  U  e.  RR )  ->  ( ( F `  y )  <  U  ->  ( F `  y
)  <_  U )
)
140134, 136, 139syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  (
( F `  y
)  <  U  ->  ( F `  y )  <_  U ) )
141135recnd 9008 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  ( F `  C )  e.  CC )
142136recnd 9008 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  U  e.  CC )
143141, 142pncan3d 9307 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  (
( F `  C
)  +  ( U  -  ( F `  C ) ) )  =  U )
144143breq2d 4137 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  (
( F `  y
)  <  ( ( F `  C )  +  ( U  -  ( F `  C ) ) )  <->  ( F `  y )  <  U
) )
145131breq1d 4135 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  y  ->  (
( F `  x
)  <_  U  <->  ( F `  y )  <_  U
) )
146145, 5elrab2 3011 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  S  <->  ( y  e.  ( A [,] B
)  /\  ( F `  y )  <_  U
) )
147146baib 871 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( A [,] B )  ->  (
y  e.  S  <->  ( F `  y )  <_  U
) )
148147ad2antrl 708 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  (
y  e.  S  <->  ( F `  y )  <_  U
) )
149140, 144, 1483imtr4d 259 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  (
( F `  y
)  <  ( ( F `  C )  +  ( U  -  ( F `  C ) ) )  ->  y  e.  S ) )
150 suprub 9862 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. z  e.  S  z  <_  x )  /\  y  e.  S )  ->  y  <_  sup ( S ,  RR ,  <  ) )
151150, 4syl6breqr 4165 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. z  e.  S  z  <_  x )  /\  y  e.  S )  ->  y  <_  C )
152151ex 423 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. z  e.  S  z  <_  x
)  ->  ( y  e.  S  ->  y  <_  C ) )
153129, 26, 1523syl 18 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  (
y  e.  S  -> 
y  <_  C )
)
154129, 11syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  ( A [,] B )  C_  RR )
155154, 128sseldd 3267 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  y  e.  RR )
156129, 29syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  C  e.  RR )
157155, 156lenltd 9112 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  (
y  <_  C  <->  -.  C  <  y ) )
158153, 157sylibd 205 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  (
y  e.  S  ->  -.  C  <  y ) )
159149, 158syld 40 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  (
( F `  y
)  <  ( ( F `  C )  +  ( U  -  ( F `  C ) ) )  ->  -.  C  <  y ) )
160159adantld 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  (
( ( ( F `
 C )  -  ( U  -  ( F `  C )
) )  <  ( F `  y )  /\  ( F `  y
)  <  ( ( F `  C )  +  ( U  -  ( F `  C ) ) ) )  ->  -.  C  <  y ) )
161138, 160sylbid 206 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  (
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) )  ->  -.  C  <  y ) )
162127, 161mt2d 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  -.  ( abs `  ( ( F `  y )  -  ( F `  C ) ) )  <  ( U  -  ( F `  C ) ) )
163162pm2.21d 98 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  ( y  e.  ( A [,] B )  /\  C  <  y
) )  ->  (
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) )  ->  -.  ( F `  C
)  <  U )
)
164163expr 598 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  y  e.  ( A [,] B ) )  -> 
( C  <  y  ->  ( ( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) )  ->  -.  ( F `  C
)  <  U )
) )
165164com23 72 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  y  e.  ( A [,] B ) )  -> 
( ( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) )  -> 
( C  <  y  ->  -.  ( F `  C )  <  U
) ) )
166165imp3a 420 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  y  e.  ( A [,] B ) )  -> 
( ( ( abs `  ( ( F `  y )  -  ( F `  C )
) )  <  ( U  -  ( F `  C ) )  /\  C  <  y )  ->  -.  ( F `  C
)  <  U )
)
167126, 166syl5 28 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  /\  y  e.  ( A [,] B ) )  -> 
( ( ( ( abs `  ( y  -  C ) )  <  z  ->  ( abs `  ( ( F `
 y )  -  ( F `  C ) ) )  <  ( U  -  ( F `  C ) ) )  /\  ( ( abs `  ( y  -  C
) )  <  z  /\  C  <  y ) )  ->  -.  ( F `  C )  <  U ) )
168167rexlimdva 2752 . . . . . . . 8  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  ( E. y  e.  ( A [,] B ) ( ( ( abs `  (
y  -  C ) )  <  z  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) ) )  /\  ( ( abs `  ( y  -  C
) )  <  z  /\  C  <  y ) )  ->  -.  ( F `  C )  <  U ) )
169124, 168syl5 28 . . . . . . 7  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  (
( A. y  e.  ( A [,] B
) ( ( abs `  ( y  -  C
) )  <  z  ->  ( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) ) )  /\  E. y  e.  ( A [,] B
) ( ( abs `  ( y  -  C
) )  <  z  /\  C  <  y ) )  ->  -.  ( F `  C )  <  U ) )
170123, 169mpan2d 655 . . . . . 6  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  ( A. y  e.  ( A [,] B ) ( ( abs `  (
y  -  C ) )  <  z  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) ) )  ->  -.  ( F `  C )  <  U
) )
17154, 170syld 40 . . . . 5  |-  ( ( ( ph  /\  ( F `  C )  <  U )  /\  z  e.  RR+ )  ->  ( A. y  e.  D  ( ( abs `  (
y  -  C ) )  <  z  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  ( U  -  ( F `  C ) ) )  ->  -.  ( F `  C )  <  U
) )
172171rexlimdva 2752 . . . 4  |-  ( (
ph  /\  ( F `  C )  <  U
)  ->  ( E. z  e.  RR+  A. y  e.  D  ( ( abs `  ( y  -  C ) )  < 
z  ->  ( abs `  ( ( F `  y )  -  ( F `  C )
) )  <  ( U  -  ( F `  C ) ) )  ->  -.  ( F `  C )  <  U
) )
17351, 172mpd 14 . . 3  |-  ( (
ph  /\  ( F `  C )  <  U
)  ->  -.  ( F `  C )  <  U )
174173ex 423 . 2  |-  ( ph  ->  ( ( F `  C )  <  U  ->  -.  ( F `  C )  <  U
) )
175174pm2.01d 161 1  |-  ( ph  ->  -.  ( F `  C )  <  U
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715    =/= wne 2529   A.wral 2628   E.wrex 2629   {crab 2632    C_ wss 3238   (/)c0 3543   ifcif 3654   class class class wbr 4125   ` cfv 5358  (class class class)co 5981   supcsup 7340   CCcc 8882   RRcr 8883    + caddc 8887   RR*cxr 9013    < clt 9014    <_ cle 9015    - cmin 9184    / cdiv 9570   2c2 9942   RR+crp 10505   [,]cicc 10812   abscabs 11926   -cn->ccncf 18594
This theorem is referenced by:  ivthlem3  19028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-er 6802  df-map 6917  df-en 7007  df-dom 7008  df-sdom 7009  df-sup 7341  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-n0 10115  df-z 10176  df-uz 10382  df-rp 10506  df-icc 10816  df-seq 11211  df-exp 11270  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-cncf 18596
  Copyright terms: Public domain W3C validator