MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixp0x Unicode version

Theorem ixp0x 7057
Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.)
Assertion
Ref Expression
ixp0x  |-  X_ x  e.  (/)  A  =  { (/)
}

Proof of Theorem ixp0x
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 dfixp 7032 . 2  |-  X_ x  e.  (/)  A  =  {
f  |  ( f  Fn  (/)  /\  A. x  e.  (/)  ( f `  x )  e.  A
) }
2 elsn 3797 . . . 4  |-  ( f  e.  { (/) }  <->  f  =  (/) )
3 fn0 5531 . . . 4  |-  ( f  Fn  (/)  <->  f  =  (/) )
4 ral0 3700 . . . . 5  |-  A. x  e.  (/)  ( f `  x )  e.  A
54biantru 492 . . . 4  |-  ( f  Fn  (/)  <->  ( f  Fn  (/)  /\  A. x  e.  (/)  ( f `  x
)  e.  A ) )
62, 3, 53bitr2i 265 . . 3  |-  ( f  e.  { (/) }  <->  ( f  Fn  (/)  /\  A. x  e.  (/)  ( f `  x )  e.  A
) )
76abbi2i 2523 . 2  |-  { (/) }  =  { f  |  ( f  Fn  (/)  /\  A. x  e.  (/)  ( f `
 x )  e.  A ) }
81, 7eqtr4i 2435 1  |-  X_ x  e.  (/)  A  =  { (/)
}
Colors of variables: wff set class
Syntax hints:    /\ wa 359    = wceq 1649    e. wcel 1721   {cab 2398   A.wral 2674   (/)c0 3596   {csn 3782    Fn wfn 5416   ` cfv 5421   X_cixp 7030
This theorem is referenced by:  0elixp  7060  ptcmpfi  17806
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-br 4181  df-opab 4235  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-fun 5423  df-fn 5424  df-ixp 7031
  Copyright terms: Public domain W3C validator