MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpconst Unicode version

Theorem ixpconst 7008
Description: Infinite Cartesian product of a constant  B. (Contributed by NM, 28-Sep-2006.)
Hypotheses
Ref Expression
ixpconst.1  |-  A  e. 
_V
ixpconst.2  |-  B  e. 
_V
Assertion
Ref Expression
ixpconst  |-  X_ x  e.  A  B  =  ( B  ^m  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem ixpconst
StepHypRef Expression
1 ixpconst.1 . 2  |-  A  e. 
_V
2 ixpconst.2 . 2  |-  B  e. 
_V
3 ixpconstg 7007 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
X_ x  e.  A  B  =  ( B  ^m  A ) )
41, 2, 3mp2an 654 1  |-  X_ x  e.  A  B  =  ( B  ^m  A )
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1717   _Vcvv 2899  (class class class)co 6020    ^m cmap 6954   X_cixp 6999
This theorem is referenced by:  pwcfsdom  8391  prdsval  13605  wunfunc  14023  wunnat  14080
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-map 6956  df-ixp 7000
  Copyright terms: Public domain W3C validator