MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq2 Unicode version

Theorem ixpeq2 6830
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
ixpeq2  |-  ( A. x  e.  A  B  =  C  ->  X_ x  e.  A  B  =  X_ x  e.  A  C
)

Proof of Theorem ixpeq2
StepHypRef Expression
1 ss2ixp 6829 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  X_ x  e.  A  B  C_  X_ x  e.  A  C )
2 ss2ixp 6829 . . 3  |-  ( A. x  e.  A  C  C_  B  ->  X_ x  e.  A  C  C_  X_ x  e.  A  B )
31, 2anim12i 549 . 2  |-  ( ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B )  ->  ( X_ x  e.  A  B  C_  X_ x  e.  A  C  /\  X_ x  e.  A  C  C_  X_ x  e.  A  B ) )
4 eqss 3194 . . . 4  |-  ( B  =  C  <->  ( B  C_  C  /\  C  C_  B ) )
54ralbii 2567 . . 3  |-  ( A. x  e.  A  B  =  C  <->  A. x  e.  A  ( B  C_  C  /\  C  C_  B ) )
6 r19.26 2675 . . 3  |-  ( A. x  e.  A  ( B  C_  C  /\  C  C_  B )  <->  ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B
) )
75, 6bitri 240 . 2  |-  ( A. x  e.  A  B  =  C  <->  ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B ) )
8 eqss 3194 . 2  |-  ( X_ x  e.  A  B  =  X_ x  e.  A  C 
<->  ( X_ x  e.  A  B  C_  X_ x  e.  A  C  /\  X_ x  e.  A  C  C_  X_ x  e.  A  B ) )
93, 7, 83imtr4i 257 1  |-  ( A. x  e.  A  B  =  C  ->  X_ x  e.  A  B  =  X_ x  e.  A  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623   A.wral 2543    C_ wss 3152   X_cixp 6817
This theorem is referenced by:  ixpeq2dva  6831  ixpint  6843  dfac9  7762  prdsbas3  13380  pwsbas  13386  xpsfrn2  13472  xpslem  13475  dprdval  15238  prdsmgp  15393  elpt  17267  elptr  17268  elptr2  17269  ptbasfi  17276  ptunimpt  17290  pttopon  17291  ptcld  17307  dfac14  17312  ptrescn  17333  xkoptsub  17348  ptuncnv  17498  ptunhmeo  17499  prdsxmslem2  18075  istopx  25547  istopxc  25548  prdstotbnd  26518  prdsbnd2  26519
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-in 3159  df-ss 3166  df-ixp 6818
  Copyright terms: Public domain W3C validator