MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq2dva Unicode version

Theorem ixpeq2dva 6847
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq2dva.1  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
Assertion
Ref Expression
ixpeq2dva  |-  ( ph  -> 
X_ x  e.  A  B  =  X_ x  e.  A  C )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem ixpeq2dva
StepHypRef Expression
1 ixpeq2dva.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
21ralrimiva 2639 . 2  |-  ( ph  ->  A. x  e.  A  B  =  C )
3 ixpeq2 6846 . 2  |-  ( A. x  e.  A  B  =  C  ->  X_ x  e.  A  B  =  X_ x  e.  A  C
)
42, 3syl 15 1  |-  ( ph  -> 
X_ x  e.  A  B  =  X_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   X_cixp 6833
This theorem is referenced by:  ixpeq2dv  6848  funcpropd  13790  natpropd  13866
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-in 3172  df-ss 3179  df-ixp 6834
  Copyright terms: Public domain W3C validator