MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpfi2 Structured version   Unicode version

Theorem ixpfi2 7408
Description: A cross product of finite sets such that all but finitely many are singletons is finite. (Note that  B ( x ) and 
D ( x ) are both possibly dependent on  x. ) (Contributed by Mario Carneiro, 25-Jan-2015.)
Hypotheses
Ref Expression
ixpfi2.1  |-  ( ph  ->  C  e.  Fin )
ixpfi2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
ixpfi2.3  |-  ( (
ph  /\  x  e.  ( A  \  C ) )  ->  B  C_  { D } )
Assertion
Ref Expression
ixpfi2  |-  ( ph  -> 
X_ x  e.  A  B  e.  Fin )
Distinct variable groups:    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    D( x)

Proof of Theorem ixpfi2
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpfi2.1 . . . 4  |-  ( ph  ->  C  e.  Fin )
2 inss2 3564 . . . 4  |-  ( A  i^i  C )  C_  C
3 ssfi 7332 . . . 4  |-  ( ( C  e.  Fin  /\  ( A  i^i  C ) 
C_  C )  -> 
( A  i^i  C
)  e.  Fin )
41, 2, 3sylancl 645 . . 3  |-  ( ph  ->  ( A  i^i  C
)  e.  Fin )
5 inss1 3563 . . . 4  |-  ( A  i^i  C )  C_  A
6 ixpfi2.2 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
76ralrimiva 2791 . . . 4  |-  ( ph  ->  A. x  e.  A  B  e.  Fin )
8 ssralv 3409 . . . 4  |-  ( ( A  i^i  C ) 
C_  A  ->  ( A. x  e.  A  B  e.  Fin  ->  A. x  e.  ( A  i^i  C
) B  e.  Fin ) )
95, 7, 8mpsyl 62 . . 3  |-  ( ph  ->  A. x  e.  ( A  i^i  C ) B  e.  Fin )
10 ixpfi 7407 . . 3  |-  ( ( ( A  i^i  C
)  e.  Fin  /\  A. x  e.  ( A  i^i  C ) B  e.  Fin )  ->  X_ x  e.  ( A  i^i  C ) B  e.  Fin )
114, 9, 10syl2anc 644 . 2  |-  ( ph  -> 
X_ x  e.  ( A  i^i  C ) B  e.  Fin )
12 resixp 7100 . . . . 5  |-  ( ( ( A  i^i  C
)  C_  A  /\  f  e.  X_ x  e.  A  B )  -> 
( f  |`  ( A  i^i  C ) )  e.  X_ x  e.  ( A  i^i  C ) B )
135, 12mpan 653 . . . 4  |-  ( f  e.  X_ x  e.  A  B  ->  ( f  |`  ( A  i^i  C ) )  e.  X_ x  e.  ( A  i^i  C
) B )
1413a1i 11 . . 3  |-  ( ph  ->  ( f  e.  X_ x  e.  A  B  ->  ( f  |`  ( A  i^i  C ) )  e.  X_ x  e.  ( A  i^i  C ) B ) )
15 simprl 734 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  f  e.  X_ x  e.  A  B )
16 vex 2961 . . . . . . . . . . 11  |-  f  e. 
_V
1716elixp 7072 . . . . . . . . . 10  |-  ( f  e.  X_ x  e.  A  B 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
1815, 17sylib 190 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  (
f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B ) )
1918simprd 451 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  A. x  e.  A  ( f `  x )  e.  B
)
20 simprr 735 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  g  e.  X_ x  e.  A  B )
21 vex 2961 . . . . . . . . . . 11  |-  g  e. 
_V
2221elixp 7072 . . . . . . . . . 10  |-  ( g  e.  X_ x  e.  A  B 
<->  ( g  Fn  A  /\  A. x  e.  A  ( g `  x
)  e.  B ) )
2320, 22sylib 190 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  (
g  Fn  A  /\  A. x  e.  A  ( g `  x )  e.  B ) )
2423simprd 451 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  A. x  e.  A  ( g `  x )  e.  B
)
25 r19.26 2840 . . . . . . . . 9  |-  ( A. x  e.  A  (
( f `  x
)  e.  B  /\  ( g `  x
)  e.  B )  <-> 
( A. x  e.  A  ( f `  x )  e.  B  /\  A. x  e.  A  ( g `  x
)  e.  B ) )
26 difss 3476 . . . . . . . . . . 11  |-  ( A 
\  C )  C_  A
27 ssralv 3409 . . . . . . . . . . 11  |-  ( ( A  \  C ) 
C_  A  ->  ( A. x  e.  A  ( ( f `  x )  e.  B  /\  ( g `  x
)  e.  B )  ->  A. x  e.  ( A  \  C ) ( ( f `  x )  e.  B  /\  ( g `  x
)  e.  B ) ) )
2826, 27ax-mp 5 . . . . . . . . . 10  |-  ( A. x  e.  A  (
( f `  x
)  e.  B  /\  ( g `  x
)  e.  B )  ->  A. x  e.  ( A  \  C ) ( ( f `  x )  e.  B  /\  ( g `  x
)  e.  B ) )
29 ixpfi2.3 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( A  \  C ) )  ->  B  C_  { D } )
3029sseld 3349 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A  \  C ) )  ->  ( (
f `  x )  e.  B  ->  ( f `
 x )  e. 
{ D } ) )
31 elsni 3840 . . . . . . . . . . . . . . 15  |-  ( ( f `  x )  e.  { D }  ->  ( f `  x
)  =  D )
3230, 31syl6 32 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A  \  C ) )  ->  ( (
f `  x )  e.  B  ->  ( f `
 x )  =  D ) )
3329sseld 3349 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A  \  C ) )  ->  ( (
g `  x )  e.  B  ->  ( g `
 x )  e. 
{ D } ) )
34 elsni 3840 . . . . . . . . . . . . . . 15  |-  ( ( g `  x )  e.  { D }  ->  ( g `  x
)  =  D )
3533, 34syl6 32 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A  \  C ) )  ->  ( (
g `  x )  e.  B  ->  ( g `
 x )  =  D ) )
3632, 35anim12d 548 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  \  C ) )  ->  ( (
( f `  x
)  e.  B  /\  ( g `  x
)  e.  B )  ->  ( ( f `
 x )  =  D  /\  ( g `
 x )  =  D ) ) )
37 eqtr3 2457 . . . . . . . . . . . . 13  |-  ( ( ( f `  x
)  =  D  /\  ( g `  x
)  =  D )  ->  ( f `  x )  =  ( g `  x ) )
3836, 37syl6 32 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  \  C ) )  ->  ( (
( f `  x
)  e.  B  /\  ( g `  x
)  e.  B )  ->  ( f `  x )  =  ( g `  x ) ) )
3938ralimdva 2786 . . . . . . . . . . 11  |-  ( ph  ->  ( A. x  e.  ( A  \  C
) ( ( f `
 x )  e.  B  /\  ( g `
 x )  e.  B )  ->  A. x  e.  ( A  \  C
) ( f `  x )  =  ( g `  x ) ) )
4039adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  ( A. x  e.  ( A  \  C ) ( ( f `  x
)  e.  B  /\  ( g `  x
)  e.  B )  ->  A. x  e.  ( A  \  C ) ( f `  x
)  =  ( g `
 x ) ) )
4128, 40syl5 31 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  ( A. x  e.  A  ( ( f `  x )  e.  B  /\  ( g `  x
)  e.  B )  ->  A. x  e.  ( A  \  C ) ( f `  x
)  =  ( g `
 x ) ) )
4225, 41syl5bir 211 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  (
( A. x  e.  A  ( f `  x )  e.  B  /\  A. x  e.  A  ( g `  x
)  e.  B )  ->  A. x  e.  ( A  \  C ) ( f `  x
)  =  ( g `
 x ) ) )
4319, 24, 42mp2and 662 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  A. x  e.  ( A  \  C
) ( f `  x )  =  ( g `  x ) )
4443biantrud 495 . . . . . 6  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  ( A. x  e.  ( A  i^i  C ) ( f `  x )  =  ( g `  x )  <->  ( A. x  e.  ( A  i^i  C ) ( f `
 x )  =  ( g `  x
)  /\  A. x  e.  ( A  \  C
) ( f `  x )  =  ( g `  x ) ) ) )
45 fvres 5748 . . . . . . . 8  |-  ( x  e.  ( A  i^i  C )  ->  ( (
f  |`  ( A  i^i  C ) ) `  x
)  =  ( f `
 x ) )
46 fvres 5748 . . . . . . . 8  |-  ( x  e.  ( A  i^i  C )  ->  ( (
g  |`  ( A  i^i  C ) ) `  x
)  =  ( g `
 x ) )
4745, 46eqeq12d 2452 . . . . . . 7  |-  ( x  e.  ( A  i^i  C )  ->  ( (
( f  |`  ( A  i^i  C ) ) `
 x )  =  ( ( g  |`  ( A  i^i  C ) ) `  x )  <-> 
( f `  x
)  =  ( g `
 x ) ) )
4847ralbiia 2739 . . . . . 6  |-  ( A. x  e.  ( A  i^i  C ) ( ( f  |`  ( A  i^i  C ) ) `  x )  =  ( ( g  |`  ( A  i^i  C ) ) `
 x )  <->  A. x  e.  ( A  i^i  C
) ( f `  x )  =  ( g `  x ) )
49 inundif 3708 . . . . . . . 8  |-  ( ( A  i^i  C )  u.  ( A  \  C ) )  =  A
5049raleqi 2910 . . . . . . 7  |-  ( A. x  e.  ( ( A  i^i  C )  u.  ( A  \  C
) ) ( f `
 x )  =  ( g `  x
)  <->  A. x  e.  A  ( f `  x
)  =  ( g `
 x ) )
51 ralunb 3530 . . . . . . 7  |-  ( A. x  e.  ( ( A  i^i  C )  u.  ( A  \  C
) ) ( f `
 x )  =  ( g `  x
)  <->  ( A. x  e.  ( A  i^i  C
) ( f `  x )  =  ( g `  x )  /\  A. x  e.  ( A  \  C
) ( f `  x )  =  ( g `  x ) ) )
5250, 51bitr3i 244 . . . . . 6  |-  ( A. x  e.  A  (
f `  x )  =  ( g `  x )  <->  ( A. x  e.  ( A  i^i  C ) ( f `
 x )  =  ( g `  x
)  /\  A. x  e.  ( A  \  C
) ( f `  x )  =  ( g `  x ) ) )
5344, 48, 523bitr4g 281 . . . . 5  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  ( A. x  e.  ( A  i^i  C ) ( ( f  |`  ( A  i^i  C ) ) `
 x )  =  ( ( g  |`  ( A  i^i  C ) ) `  x )  <->  A. x  e.  A  ( f `  x
)  =  ( g `
 x ) ) )
5418simpld 447 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  f  Fn  A )
55 fnssres 5561 . . . . . . 7  |-  ( ( f  Fn  A  /\  ( A  i^i  C ) 
C_  A )  -> 
( f  |`  ( A  i^i  C ) )  Fn  ( A  i^i  C ) )
5654, 5, 55sylancl 645 . . . . . 6  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  (
f  |`  ( A  i^i  C ) )  Fn  ( A  i^i  C ) )
5723simpld 447 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  g  Fn  A )
58 fnssres 5561 . . . . . . 7  |-  ( ( g  Fn  A  /\  ( A  i^i  C ) 
C_  A )  -> 
( g  |`  ( A  i^i  C ) )  Fn  ( A  i^i  C ) )
5957, 5, 58sylancl 645 . . . . . 6  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  (
g  |`  ( A  i^i  C ) )  Fn  ( A  i^i  C ) )
60 eqfnfv 5830 . . . . . 6  |-  ( ( ( f  |`  ( A  i^i  C ) )  Fn  ( A  i^i  C )  /\  ( g  |`  ( A  i^i  C
) )  Fn  ( A  i^i  C ) )  ->  ( ( f  |`  ( A  i^i  C
) )  =  ( g  |`  ( A  i^i  C ) )  <->  A. x  e.  ( A  i^i  C
) ( ( f  |`  ( A  i^i  C
) ) `  x
)  =  ( ( g  |`  ( A  i^i  C ) ) `  x ) ) )
6156, 59, 60syl2anc 644 . . . . 5  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  (
( f  |`  ( A  i^i  C ) )  =  ( g  |`  ( A  i^i  C ) )  <->  A. x  e.  ( A  i^i  C ) ( ( f  |`  ( A  i^i  C ) ) `  x )  =  ( ( g  |`  ( A  i^i  C
) ) `  x
) ) )
62 eqfnfv 5830 . . . . . 6  |-  ( ( f  Fn  A  /\  g  Fn  A )  ->  ( f  =  g  <->  A. x  e.  A  ( f `  x
)  =  ( g `
 x ) ) )
6354, 57, 62syl2anc 644 . . . . 5  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  (
f  =  g  <->  A. x  e.  A  ( f `  x )  =  ( g `  x ) ) )
6453, 61, 633bitr4d 278 . . . 4  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  (
( f  |`  ( A  i^i  C ) )  =  ( g  |`  ( A  i^i  C ) )  <->  f  =  g ) )
6564ex 425 . . 3  |-  ( ph  ->  ( ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
)  ->  ( (
f  |`  ( A  i^i  C ) )  =  ( g  |`  ( A  i^i  C ) )  <->  f  =  g ) ) )
6614, 65dom2lem 7150 . 2  |-  ( ph  ->  ( f  e.  X_ x  e.  A  B  |->  ( f  |`  ( A  i^i  C ) ) ) : X_ x  e.  A  B -1-1-> X_ x  e.  ( A  i^i  C
) B )
67 f1fi 7396 . 2  |-  ( (
X_ x  e.  ( A  i^i  C ) B  e.  Fin  /\  ( f  e.  X_ x  e.  A  B  |->  ( f  |`  ( A  i^i  C ) ) ) : X_ x  e.  A  B -1-1-> X_ x  e.  ( A  i^i  C
) B )  ->  X_ x  e.  A  B  e.  Fin )
6811, 66, 67syl2anc 644 1  |-  ( ph  -> 
X_ x  e.  A  B  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707    \ cdif 3319    u. cun 3320    i^i cin 3321    C_ wss 3322   {csn 3816    e. cmpt 4269    |` cres 4883    Fn wfn 5452   -1-1->wf1 5454   ` cfv 5457   X_cixp 7066   Fincfn 7112
This theorem is referenced by:  psrbaglefi  16442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116
  Copyright terms: Public domain W3C validator