MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpint Unicode version

Theorem ixpint 6986
Description: The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.)
Assertion
Ref Expression
ixpint  |-  ( B  =/=  (/)  ->  X_ x  e.  A  |^| B  = 
|^|_ y  e.  B  X_ x  e.  A  y )
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem ixpint
StepHypRef Expression
1 ixpeq2 6973 . . 3  |-  ( A. x  e.  A  |^| B  =  |^|_ y  e.  B  y  ->  X_ x  e.  A  |^| B  = 
X_ x  e.  A  |^|_ y  e.  B  y )
2 intiin 4058 . . . 4  |-  |^| B  =  |^|_ y  e.  B  y
32a1i 10 . . 3  |-  ( x  e.  A  ->  |^| B  =  |^|_ y  e.  B  y )
41, 3mprg 2697 . 2  |-  X_ x  e.  A  |^| B  = 
X_ x  e.  A  |^|_ y  e.  B  y
5 ixpiin 6985 . 2  |-  ( B  =/=  (/)  ->  X_ x  e.  A  |^|_ y  e.  B  y  =  |^|_ y  e.  B  X_ x  e.  A  y )
64, 5syl5eq 2410 1  |-  ( B  =/=  (/)  ->  X_ x  e.  A  |^| B  = 
|^|_ y  e.  B  X_ x  e.  A  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1647    e. wcel 1715    =/= wne 2529   (/)c0 3543   |^|cint 3964   |^|_ciin 4008   X_cixp 6960
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-nul 4251
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-int 3965  df-iin 4010  df-br 4126  df-opab 4180  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-iota 5322  df-fun 5360  df-fn 5361  df-fv 5366  df-ixp 6961
  Copyright terms: Public domain W3C validator