MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpint Unicode version

Theorem ixpint 6843
Description: The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.)
Assertion
Ref Expression
ixpint  |-  ( B  =/=  (/)  ->  X_ x  e.  A  |^| B  = 
|^|_ y  e.  B  X_ x  e.  A  y )
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem ixpint
StepHypRef Expression
1 ixpeq2 6830 . . 3  |-  ( A. x  e.  A  |^| B  =  |^|_ y  e.  B  y  ->  X_ x  e.  A  |^| B  = 
X_ x  e.  A  |^|_ y  e.  B  y )
2 intiin 3956 . . . 4  |-  |^| B  =  |^|_ y  e.  B  y
32a1i 10 . . 3  |-  ( x  e.  A  ->  |^| B  =  |^|_ y  e.  B  y )
41, 3mprg 2612 . 2  |-  X_ x  e.  A  |^| B  = 
X_ x  e.  A  |^|_ y  e.  B  y
5 ixpiin 6842 . 2  |-  ( B  =/=  (/)  ->  X_ x  e.  A  |^|_ y  e.  B  y  =  |^|_ y  e.  B  X_ x  e.  A  y )
64, 5syl5eq 2327 1  |-  ( B  =/=  (/)  ->  X_ x  e.  A  |^| B  = 
|^|_ y  e.  B  X_ x  e.  A  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684    =/= wne 2446   (/)c0 3455   |^|cint 3862   |^|_ciin 3906   X_cixp 6817
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-iin 3908  df-br 4024  df-opab 4078  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263  df-ixp 6818
  Copyright terms: Public domain W3C validator