MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpiunwdom Unicode version

Theorem ixpiunwdom 7305
Description: Describe an onto function from the indexed cartesian product to the indexed union. Together with ixpssmapg 6846 this shows that  U_ x  e.  A B and  X_ x  e.  A B have closely linked cardinalities. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
ixpiunwdom  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  U_ x  e.  A  B  ~<_*  ( X_ x  e.  A  B  X.  A
) )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)    W( x)

Proof of Theorem ixpiunwdom
Dummy variables  f 
g  k  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2791 . . . . . . . . . 10  |-  f  e. 
_V
21elixp 6823 . . . . . . . . 9  |-  ( f  e.  X_ x  e.  A  B 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
32simprbi 450 . . . . . . . 8  |-  ( f  e.  X_ x  e.  A  B  ->  A. x  e.  A  ( f `  x
)  e.  B )
4 ssiun2 3945 . . . . . . . . . 10  |-  ( x  e.  A  ->  B  C_ 
U_ x  e.  A  B )
54sseld 3179 . . . . . . . . 9  |-  ( x  e.  A  ->  (
( f `  x
)  e.  B  -> 
( f `  x
)  e.  U_ x  e.  A  B )
)
65ralimia 2616 . . . . . . . 8  |-  ( A. x  e.  A  (
f `  x )  e.  B  ->  A. x  e.  A  ( f `  x )  e.  U_ x  e.  A  B
)
73, 6syl 15 . . . . . . 7  |-  ( f  e.  X_ x  e.  A  B  ->  A. x  e.  A  ( f `  x
)  e.  U_ x  e.  A  B )
8 nfv 1605 . . . . . . . 8  |-  F/ y ( f `  x
)  e.  U_ x  e.  A  B
9 nfiu1 3933 . . . . . . . . 9  |-  F/_ x U_ x  e.  A  B
109nfel2 2431 . . . . . . . 8  |-  F/ x
( f `  y
)  e.  U_ x  e.  A  B
11 fveq2 5525 . . . . . . . . 9  |-  ( x  =  y  ->  (
f `  x )  =  ( f `  y ) )
1211eleq1d 2349 . . . . . . . 8  |-  ( x  =  y  ->  (
( f `  x
)  e.  U_ x  e.  A  B  <->  ( f `  y )  e.  U_ x  e.  A  B
) )
138, 10, 12cbvral 2760 . . . . . . 7  |-  ( A. x  e.  A  (
f `  x )  e.  U_ x  e.  A  B 
<-> 
A. y  e.  A  ( f `  y
)  e.  U_ x  e.  A  B )
147, 13sylib 188 . . . . . 6  |-  ( f  e.  X_ x  e.  A  B  ->  A. y  e.  A  ( f `  y
)  e.  U_ x  e.  A  B )
1514adantl 452 . . . . 5  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  /\  f  e.  X_ x  e.  A  B )  ->  A. y  e.  A  ( f `  y )  e.  U_ x  e.  A  B
)
1615ralrimiva 2626 . . . 4  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  A. f  e.  X_  x  e.  A  B A. y  e.  A  ( f `  y
)  e.  U_ x  e.  A  B )
17 eqid 2283 . . . . 5  |-  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y ) )  =  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y
) )
1817fmpt2 6191 . . . 4  |-  ( A. f  e.  X_  x  e.  A  B A. y  e.  A  ( f `  y )  e.  U_ x  e.  A  B  <->  ( f  e.  X_ x  e.  A  B , 
y  e.  A  |->  ( f `  y ) ) : ( X_ x  e.  A  B  X.  A ) --> U_ x  e.  A  B )
1916, 18sylib 188 . . 3  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y ) ) : ( X_ x  e.  A  B  X.  A
) --> U_ x  e.  A  B )
20 ixpssmap2g 6845 . . . . . 6  |-  ( U_ x  e.  A  B  e.  W  ->  X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A ) )
21203ad2ant2 977 . . . . 5  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A ) )
22 ovex 5883 . . . . . 6  |-  ( U_ x  e.  A  B  ^m  A )  e.  _V
2322ssex 4158 . . . . 5  |-  ( X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A
)  ->  X_ x  e.  A  B  e.  _V )
2421, 23syl 15 . . . 4  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  X_ x  e.  A  B  e.  _V )
25 simp1 955 . . . 4  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  A  e.  V )
26 xpexg 4800 . . . 4  |-  ( (
X_ x  e.  A  B  e.  _V  /\  A  e.  V )  ->  ( X_ x  e.  A  B  X.  A )  e.  _V )
2724, 25, 26syl2anc 642 . . 3  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  ( X_ x  e.  A  B  X.  A )  e.  _V )
28 simp2 956 . . 3  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  U_ x  e.  A  B  e.  W
)
29 fex2 5401 . . 3  |-  ( ( ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y
) ) : (
X_ x  e.  A  B  X.  A ) --> U_ x  e.  A  B  /\  ( X_ x  e.  A  B  X.  A
)  e.  _V  /\  U_ x  e.  A  B  e.  W )  ->  (
f  e.  X_ x  e.  A  B , 
y  e.  A  |->  ( f `  y ) )  e.  _V )
3019, 27, 28, 29syl3anc 1182 . 2  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y ) )  e. 
_V )
31 ffn 5389 . . . . 5  |-  ( ( f  e.  X_ x  e.  A  B , 
y  e.  A  |->  ( f `  y ) ) : ( X_ x  e.  A  B  X.  A ) --> U_ x  e.  A  B  ->  ( f  e.  X_ x  e.  A  B , 
y  e.  A  |->  ( f `  y ) )  Fn  ( X_ x  e.  A  B  X.  A ) )
3219, 31syl 15 . . . 4  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y ) )  Fn  ( X_ x  e.  A  B  X.  A
) )
33 dffn4 5457 . . . 4  |-  ( ( f  e.  X_ x  e.  A  B , 
y  e.  A  |->  ( f `  y ) )  Fn  ( X_ x  e.  A  B  X.  A )  <->  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y ) ) : ( X_ x  e.  A  B  X.  A
) -onto-> ran  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y ) ) )
3432, 33sylib 188 . . 3  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y ) ) : ( X_ x  e.  A  B  X.  A
) -onto-> ran  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y ) ) )
35 n0 3464 . . . . . . . . . 10  |-  ( X_ x  e.  A  B  =/=  (/)  <->  E. g  g  e.  X_ x  e.  A  B )
36 eliun 3909 . . . . . . . . . . . 12  |-  ( z  e.  U_ x  e.  A  B  <->  E. x  e.  A  z  e.  B )
37 nfixp1 6836 . . . . . . . . . . . . . 14  |-  F/_ x X_ x  e.  A  B
3837nfel2 2431 . . . . . . . . . . . . 13  |-  F/ x  g  e.  X_ x  e.  A  B
39 nfv 1605 . . . . . . . . . . . . . 14  |-  F/ x E. y  e.  A  z  =  ( f `  y )
4037, 39nfrex 2598 . . . . . . . . . . . . 13  |-  F/ x E. f  e.  X_  x  e.  A  B E. y  e.  A  z  =  ( f `  y )
41 simplrr 737 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  /\  k  e.  A )  ->  z  e.  B )
42 iftrue 3571 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  x  ->  if ( k  =  x ,  z ,  ( g `  k ) )  =  z )
43 csbeq1a 3089 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  k  ->  B  =  [_ k  /  x ]_ B )
4443eqcoms 2286 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  x  ->  B  =  [_ k  /  x ]_ B )
4544eqcomd 2288 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  x  ->  [_ k  /  x ]_ B  =  B )
4642, 45eleq12d 2351 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  x  ->  ( if ( k  =  x ,  z ,  ( g `  k ) )  e.  [_ k  /  x ]_ B  <->  z  e.  B ) )
4741, 46syl5ibrcom 213 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  /\  k  e.  A )  ->  (
k  =  x  ->  if ( k  =  x ,  z ,  ( g `  k ) )  e.  [_ k  /  x ]_ B ) )
48 vex 2791 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  g  e. 
_V
4948elixp 6823 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( g  e.  X_ x  e.  A  B 
<->  ( g  Fn  A  /\  A. x  e.  A  ( g `  x
)  e.  B ) )
5049simprbi 450 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( g  e.  X_ x  e.  A  B  ->  A. x  e.  A  ( g `  x
)  e.  B )
5150adantr 451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  ->  A. x  e.  A  ( g `  x )  e.  B
)
52 nfv 1605 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ k ( g `  x
)  e.  B
53 nfcsb1v 3113 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/_ x [_ k  /  x ]_ B
5453nfel2 2431 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ x
( g `  k
)  e.  [_ k  /  x ]_ B
55 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  k  ->  (
g `  x )  =  ( g `  k ) )
5655, 43eleq12d 2351 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  k  ->  (
( g `  x
)  e.  B  <->  ( g `  k )  e.  [_ k  /  x ]_ B
) )
5752, 54, 56cbvral 2760 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. x  e.  A  (
g `  x )  e.  B  <->  A. k  e.  A  ( g `  k
)  e.  [_ k  /  x ]_ B )
5851, 57sylib 188 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  ->  A. k  e.  A  ( g `  k )  e.  [_ k  /  x ]_ B
)
5958r19.21bi 2641 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  /\  k  e.  A )  ->  (
g `  k )  e.  [_ k  /  x ]_ B )
60 iffalse 3572 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  k  =  x  ->  if ( k  =  x ,  z ,  ( g `  k ) )  =  ( g `
 k ) )
6160eleq1d 2349 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  k  =  x  -> 
( if ( k  =  x ,  z ,  ( g `  k ) )  e. 
[_ k  /  x ]_ B  <->  ( g `  k )  e.  [_ k  /  x ]_ B
) )
6259, 61syl5ibrcom 213 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  /\  k  e.  A )  ->  ( -.  k  =  x  ->  if ( k  =  x ,  z ,  ( g `  k
) )  e.  [_ k  /  x ]_ B
) )
6347, 62pm2.61d 150 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  /\  k  e.  A )  ->  if ( k  =  x ,  z ,  ( g `  k ) )  e.  [_ k  /  x ]_ B )
6463ralrimiva 2626 . . . . . . . . . . . . . . . . 17  |-  ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  ->  A. k  e.  A  if (
k  =  x ,  z ,  ( g `
 k ) )  e.  [_ k  /  x ]_ B )
65 ixpfn 6822 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g  e.  X_ x  e.  A  B  ->  g  Fn  A
)
6665adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  ->  g  Fn  A )
67 fndm 5343 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  Fn  A  ->  dom  g  =  A )
6866, 67syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  ->  dom  g  =  A )
6948dmex 4941 . . . . . . . . . . . . . . . . . . 19  |-  dom  g  e.  _V
7068, 69syl6eqelr 2372 . . . . . . . . . . . . . . . . . 18  |-  ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  ->  A  e.  _V )
71 mptelixpg 6853 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  _V  ->  (
( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `  k
) ) )  e.  X_ k  e.  A  [_ k  /  x ]_ B 
<-> 
A. k  e.  A  if ( k  =  x ,  z ,  ( g `  k ) )  e.  [_ k  /  x ]_ B ) )
7270, 71syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  ->  (
( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `  k
) ) )  e.  X_ k  e.  A  [_ k  /  x ]_ B 
<-> 
A. k  e.  A  if ( k  =  x ,  z ,  ( g `  k ) )  e.  [_ k  /  x ]_ B ) )
7364, 72mpbird 223 . . . . . . . . . . . . . . . 16  |-  ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  ->  (
k  e.  A  |->  if ( k  =  x ,  z ,  ( g `  k ) ) )  e.  X_ k  e.  A  [_ k  /  x ]_ B )
74 nfcv 2419 . . . . . . . . . . . . . . . . 17  |-  F/_ k B
7574, 53, 43cbvixp 6833 . . . . . . . . . . . . . . . 16  |-  X_ x  e.  A  B  =  X_ k  e.  A  [_ k  /  x ]_ B
7673, 75syl6eleqr 2374 . . . . . . . . . . . . . . 15  |-  ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  ->  (
k  e.  A  |->  if ( k  =  x ,  z ,  ( g `  k ) ) )  e.  X_ x  e.  A  B
)
77 simprl 732 . . . . . . . . . . . . . . 15  |-  ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  ->  x  e.  A )
78 eqid 2283 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `
 k ) ) )  =  ( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `
 k ) ) )
79 vex 2791 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
8042, 78, 79fvmpt 5602 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  A  ->  (
( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `  k
) ) ) `  x )  =  z )
8180ad2antrl 708 . . . . . . . . . . . . . . . 16  |-  ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  ->  (
( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `  k
) ) ) `  x )  =  z )
8281eqcomd 2288 . . . . . . . . . . . . . . 15  |-  ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  ->  z  =  ( ( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `
 k ) ) ) `  x ) )
83 fveq1 5524 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `  k ) ) )  ->  ( f `  y )  =  ( ( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `  k
) ) ) `  y ) )
8483eqeq2d 2294 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `  k ) ) )  ->  ( z  =  ( f `  y
)  <->  z  =  ( ( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `  k
) ) ) `  y ) ) )
85 fveq2 5525 . . . . . . . . . . . . . . . . 17  |-  ( y  =  x  ->  (
( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `  k
) ) ) `  y )  =  ( ( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `  k
) ) ) `  x ) )
8685eqeq2d 2294 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  (
z  =  ( ( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `  k ) ) ) `  y
)  <->  z  =  ( ( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `  k
) ) ) `  x ) ) )
8784, 86rspc2ev 2892 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `  k
) ) )  e.  X_ x  e.  A  B  /\  x  e.  A  /\  z  =  (
( k  e.  A  |->  if ( k  =  x ,  z ,  ( g `  k
) ) ) `  x ) )  ->  E. f  e.  X_  x  e.  A  B E. y  e.  A  z  =  ( f `  y ) )
8876, 77, 82, 87syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( g  e.  X_ x  e.  A  B  /\  ( x  e.  A  /\  z  e.  B
) )  ->  E. f  e.  X_  x  e.  A  B E. y  e.  A  z  =  ( f `  y ) )
8988exp32 588 . . . . . . . . . . . . 13  |-  ( g  e.  X_ x  e.  A  B  ->  ( x  e.  A  ->  ( z  e.  B  ->  E. f  e.  X_  x  e.  A  B E. y  e.  A  z  =  ( f `  y ) ) ) )
9038, 40, 89rexlimd 2664 . . . . . . . . . . . 12  |-  ( g  e.  X_ x  e.  A  B  ->  ( E. x  e.  A  z  e.  B  ->  E. f  e.  X_  x  e.  A  B E. y  e.  A  z  =  ( f `  y ) ) )
9136, 90syl5bi 208 . . . . . . . . . . 11  |-  ( g  e.  X_ x  e.  A  B  ->  ( z  e. 
U_ x  e.  A  B  ->  E. f  e.  X_  x  e.  A  B E. y  e.  A  z  =  ( f `  y ) ) )
9291exlimiv 1666 . . . . . . . . . 10  |-  ( E. g  g  e.  X_ x  e.  A  B  ->  ( z  e.  U_ x  e.  A  B  ->  E. f  e.  X_  x  e.  A  B E. y  e.  A  z  =  ( f `  y ) ) )
9335, 92sylbi 187 . . . . . . . . 9  |-  ( X_ x  e.  A  B  =/=  (/)  ->  ( z  e.  U_ x  e.  A  B  ->  E. f  e.  X_  x  e.  A  B E. y  e.  A  z  =  ( f `  y ) ) )
94933ad2ant3 978 . . . . . . . 8  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  ( z  e.  U_ x  e.  A  B  ->  E. f  e.  X_  x  e.  A  B E. y  e.  A  z  =  ( f `  y ) ) )
9594alrimiv 1617 . . . . . . 7  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  A. z
( z  e.  U_ x  e.  A  B  ->  E. f  e.  X_  x  e.  A  B E. y  e.  A  z  =  ( f `  y ) ) )
96 ssab 3243 . . . . . . 7  |-  ( U_ x  e.  A  B  C_ 
{ z  |  E. f  e.  X_  x  e.  A  B E. y  e.  A  z  =  ( f `  y
) }  <->  A. z
( z  e.  U_ x  e.  A  B  ->  E. f  e.  X_  x  e.  A  B E. y  e.  A  z  =  ( f `  y ) ) )
9795, 96sylibr 203 . . . . . 6  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  U_ x  e.  A  B  C_  { z  |  E. f  e.  X_  x  e.  A  B E. y  e.  A  z  =  ( f `  y ) } )
9817rnmpt2 5954 . . . . . 6  |-  ran  (
f  e.  X_ x  e.  A  B , 
y  e.  A  |->  ( f `  y ) )  =  { z  |  E. f  e.  X_  x  e.  A  B E. y  e.  A  z  =  ( f `  y ) }
9997, 98syl6sseqr 3225 . . . . 5  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  U_ x  e.  A  B  C_  ran  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y
) ) )
100 frn 5395 . . . . . 6  |-  ( ( f  e.  X_ x  e.  A  B , 
y  e.  A  |->  ( f `  y ) ) : ( X_ x  e.  A  B  X.  A ) --> U_ x  e.  A  B  ->  ran  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y
) )  C_  U_ x  e.  A  B )
10119, 100syl 15 . . . . 5  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  ran  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y ) )  C_  U_ x  e.  A  B
)
10299, 101eqssd 3196 . . . 4  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  U_ x  e.  A  B  =  ran  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y
) ) )
103 foeq3 5449 . . . 4  |-  ( U_ x  e.  A  B  =  ran  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y ) )  -> 
( ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y ) ) : ( X_ x  e.  A  B  X.  A
) -onto-> U_ x  e.  A  B 
<->  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y
) ) : (
X_ x  e.  A  B  X.  A ) -onto-> ran  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y
) ) ) )
104102, 103syl 15 . . 3  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  ( (
f  e.  X_ x  e.  A  B , 
y  e.  A  |->  ( f `  y ) ) : ( X_ x  e.  A  B  X.  A ) -onto-> U_ x  e.  A  B  <->  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y ) ) : ( X_ x  e.  A  B  X.  A
) -onto-> ran  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y ) ) ) )
10534, 104mpbird 223 . 2  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y ) ) : ( X_ x  e.  A  B  X.  A
) -onto-> U_ x  e.  A  B )
106 fowdom 7285 . 2  |-  ( ( ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y
) )  e.  _V  /\  ( f  e.  X_ x  e.  A  B ,  y  e.  A  |->  ( f `  y
) ) : (
X_ x  e.  A  B  X.  A ) -onto-> U_ x  e.  A  B
)  ->  U_ x  e.  A  B  ~<_*  ( X_ x  e.  A  B  X.  A
) )
10730, 105, 106syl2anc 642 1  |-  ( ( A  e.  V  /\  U_ x  e.  A  B  e.  W  /\  X_ x  e.  A  B  =/=  (/) )  ->  U_ x  e.  A  B  ~<_*  ( X_ x  e.  A  B  X.  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788   [_csb 3081    C_ wss 3152   (/)c0 3455   ifcif 3565   U_ciun 3905   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   dom cdm 4689   ran crn 4690    Fn wfn 5250   -->wf 5251   -onto->wfo 5253   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860    ^m cmap 6772   X_cixp 6817    ~<_* cwdom 7271
This theorem is referenced by:  ptcmplem2  17747
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-map 6774  df-ixp 6818  df-wdom 7273
  Copyright terms: Public domain W3C validator