MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxub Unicode version

Theorem ixxub 10862
Description: Extract the upper bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypotheses
Ref Expression
ixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixxub.2  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w  <  B  ->  w S B ) )
ixxub.3  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w S B  ->  w  <_  B ) )
ixxub.4  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A R w ) )
ixxub.5  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w  ->  A  <_  w ) )
Assertion
Ref Expression
ixxub  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  sup (
( A O B ) ,  RR* ,  <  )  =  B )
Distinct variable groups:    x, w, y, z, A    w, O    w, B, x, y, z   
x, R, y, z   
x, S, y, z
Allowed substitution hints:    R( w)    S( w)    O( x, y, z)

Proof of Theorem ixxub
StepHypRef Expression
1 ixx.1 . . . . . . . . 9  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
21elixx1 10850 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
323adant3 977 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
43biimpa 471 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  (
w  e.  RR*  /\  A R w  /\  w S B ) )
54simp3d 971 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  w S B )
64simp1d 969 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  w  e.  RR* )
7 simp2 958 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  B  e. 
RR* )
87adantr 452 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  B  e.  RR* )
9 ixxub.3 . . . . . 6  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w S B  ->  w  <_  B ) )
106, 8, 9syl2anc 643 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  (
w S B  ->  w  <_  B ) )
115, 10mpd 15 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  w  <_  B )
1211ralrimiva 2725 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  A. w  e.  ( A O B ) w  <_  B
)
136ex 424 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( w  e.  ( A O B )  ->  w  e.  RR* ) )
1413ssrdv 3290 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( A O B )  C_  RR* )
15 supxrleub 10830 . . . 4  |-  ( ( ( A O B )  C_  RR*  /\  B  e.  RR* )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  <_  B  <->  A. w  e.  ( A O B ) w  <_  B ) )
1614, 7, 15syl2anc 643 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  <_  B  <->  A. w  e.  ( A O B ) w  <_  B ) )
1712, 16mpbird 224 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  sup (
( A O B ) ,  RR* ,  <  )  <_  B )
18 simprl 733 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  sup ( ( A O B ) ,  RR* ,  <  )  <  w
)
1914ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  -> 
( A O B )  C_  RR* )
20 qre 10504 . . . . . . . . . . 11  |-  ( w  e.  QQ  ->  w  e.  RR )
2120rexrd 9060 . . . . . . . . . 10  |-  ( w  e.  QQ  ->  w  e.  RR* )
2221ad2antlr 708 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  w  e.  RR* )
23 simp1 957 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  A  e. 
RR* )
2423ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  A  e.  RR* )
25 supxrcl 10818 . . . . . . . . . . . . 13  |-  ( ( A O B ) 
C_  RR*  ->  sup (
( A O B ) ,  RR* ,  <  )  e.  RR* )
2614, 25syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  sup (
( A O B ) ,  RR* ,  <  )  e.  RR* )
2726ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  sup ( ( A O B ) ,  RR* ,  <  )  e.  RR* )
28 simp3 959 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( A O B )  =/=  (/) )
29 n0 3573 . . . . . . . . . . . . . 14  |-  ( ( A O B )  =/=  (/)  <->  E. w  w  e.  ( A O B ) )
3028, 29sylib 189 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  E. w  w  e.  ( A O B ) )
3123adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  A  e.  RR* )
3226adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  sup ( ( A O B ) ,  RR* ,  <  )  e.  RR* )
334simp2d 970 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  A R w )
34 ixxub.5 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w  ->  A  <_  w ) )
3531, 6, 34syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  ( A R w  ->  A  <_  w ) )
3633, 35mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  A  <_  w )
37 supxrub 10828 . . . . . . . . . . . . . . 15  |-  ( ( ( A O B )  C_  RR*  /\  w  e.  ( A O B ) )  ->  w  <_  sup ( ( A O B ) , 
RR* ,  <  ) )
3814, 37sylan 458 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  w  <_  sup ( ( A O B ) , 
RR* ,  <  ) )
3931, 6, 32, 36, 38xrletrd 10677 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  A  <_  sup ( ( A O B ) , 
RR* ,  <  ) )
4030, 39exlimddv 1645 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  A  <_  sup ( ( A O B ) ,  RR* ,  <  ) )
4140ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  A  <_  sup ( ( A O B ) , 
RR* ,  <  ) )
4224, 27, 22, 41, 18xrlelttrd 10675 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  A  <  w )
43 ixxub.4 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A R w ) )
4424, 22, 43syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  -> 
( A  <  w  ->  A R w ) )
4542, 44mpd 15 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  A R w )
46 simprr 734 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  w  <  B )
477ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  B  e.  RR* )
48 ixxub.2 . . . . . . . . . . 11  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w  <  B  ->  w S B ) )
4922, 47, 48syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  -> 
( w  <  B  ->  w S B ) )
5046, 49mpd 15 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  w S B )
513ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  -> 
( w  e.  ( A O B )  <-> 
( w  e.  RR*  /\  A R w  /\  w S B ) ) )
5222, 45, 50, 51mpbir3and 1137 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  w  e.  ( A O B ) )
5319, 52, 37syl2anc 643 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  w  <_  sup ( ( A O B ) , 
RR* ,  <  ) )
54 xrlenlt 9069 . . . . . . . 8  |-  ( ( w  e.  RR*  /\  sup ( ( A O B ) ,  RR* ,  <  )  e.  RR* )  ->  ( w  <_  sup ( ( A O B ) ,  RR* ,  <  )  <->  -.  sup (
( A O B ) ,  RR* ,  <  )  <  w ) )
5522, 27, 54syl2anc 643 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  -> 
( w  <_  sup ( ( A O B ) ,  RR* ,  <  )  <->  -.  sup (
( A O B ) ,  RR* ,  <  )  <  w ) )
5653, 55mpbid 202 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  -.  sup ( ( A O B ) , 
RR* ,  <  )  < 
w )
5718, 56pm2.65da 560 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  ->  -.  ( sup ( ( A O B ) , 
RR* ,  <  )  < 
w  /\  w  <  B ) )
5857nrexdv 2745 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  -.  E. w  e.  QQ  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  <  B ) )
59 qbtwnxr 10711 . . . . . 6  |-  ( ( sup ( ( A O B ) , 
RR* ,  <  )  e. 
RR*  /\  B  e.  RR* 
/\  sup ( ( A O B ) , 
RR* ,  <  )  < 
B )  ->  E. w  e.  QQ  ( sup (
( A O B ) ,  RR* ,  <  )  <  w  /\  w  <  B ) )
60593expia 1155 . . . . 5  |-  ( ( sup ( ( A O B ) , 
RR* ,  <  )  e. 
RR*  /\  B  e.  RR* )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  <  B  ->  E. w  e.  QQ  ( sup ( ( A O B ) , 
RR* ,  <  )  < 
w  /\  w  <  B ) ) )
6126, 7, 60syl2anc 643 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  <  B  ->  E. w  e.  QQ  ( sup ( ( A O B ) , 
RR* ,  <  )  < 
w  /\  w  <  B ) ) )
6258, 61mtod 170 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  -.  sup ( ( A O B ) ,  RR* ,  <  )  <  B
)
63 xrlenlt 9069 . . . 4  |-  ( ( B  e.  RR*  /\  sup ( ( A O B ) ,  RR* ,  <  )  e.  RR* )  ->  ( B  <_  sup ( ( A O B ) ,  RR* ,  <  )  <->  -.  sup (
( A O B ) ,  RR* ,  <  )  <  B ) )
647, 26, 63syl2anc 643 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( B  <_  sup ( ( A O B ) , 
RR* ,  <  )  <->  -.  sup (
( A O B ) ,  RR* ,  <  )  <  B ) )
6562, 64mpbird 224 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  B  <_  sup ( ( A O B ) ,  RR* ,  <  ) )
66 xrletri3 10670 . . 3  |-  ( ( sup ( ( A O B ) , 
RR* ,  <  )  e. 
RR*  /\  B  e.  RR* )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  =  B  <-> 
( sup ( ( A O B ) ,  RR* ,  <  )  <_  B  /\  B  <_  sup ( ( A O B ) ,  RR* ,  <  ) ) ) )
6726, 7, 66syl2anc 643 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  =  B  <-> 
( sup ( ( A O B ) ,  RR* ,  <  )  <_  B  /\  B  <_  sup ( ( A O B ) ,  RR* ,  <  ) ) ) )
6817, 65, 67mpbir2and 889 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  sup (
( A O B ) ,  RR* ,  <  )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1717    =/= wne 2543   A.wral 2642   E.wrex 2643   {crab 2646    C_ wss 3256   (/)c0 3564   class class class wbr 4146  (class class class)co 6013    e. cmpt2 6015   supcsup 7373   RR*cxr 9045    < clt 9046    <_ cle 9047   QQcq 10499
This theorem is referenced by:  ioopnfsup  11165  icopnfsup  11166  bndth  18847  ioorf  19325  ioorinv2  19327
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-sup 7374  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-n0 10147  df-z 10208  df-uz 10414  df-q 10500
  Copyright terms: Public domain W3C validator