MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxub Structured version   Unicode version

Theorem ixxub 10929
Description: Extract the upper bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypotheses
Ref Expression
ixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixxub.2  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w  <  B  ->  w S B ) )
ixxub.3  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w S B  ->  w  <_  B ) )
ixxub.4  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A R w ) )
ixxub.5  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w  ->  A  <_  w ) )
Assertion
Ref Expression
ixxub  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  sup (
( A O B ) ,  RR* ,  <  )  =  B )
Distinct variable groups:    x, w, y, z, A    w, O    w, B, x, y, z   
x, R, y, z   
x, S, y, z
Allowed substitution hints:    R( w)    S( w)    O( x, y, z)

Proof of Theorem ixxub
StepHypRef Expression
1 ixx.1 . . . . . . . . 9  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
21elixx1 10917 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
323adant3 977 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
43biimpa 471 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  (
w  e.  RR*  /\  A R w  /\  w S B ) )
54simp3d 971 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  w S B )
64simp1d 969 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  w  e.  RR* )
7 simp2 958 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  B  e. 
RR* )
87adantr 452 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  B  e.  RR* )
9 ixxub.3 . . . . . 6  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w S B  ->  w  <_  B ) )
106, 8, 9syl2anc 643 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  (
w S B  ->  w  <_  B ) )
115, 10mpd 15 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  w  <_  B )
1211ralrimiva 2781 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  A. w  e.  ( A O B ) w  <_  B
)
136ex 424 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( w  e.  ( A O B )  ->  w  e.  RR* ) )
1413ssrdv 3346 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( A O B )  C_  RR* )
15 supxrleub 10897 . . . 4  |-  ( ( ( A O B )  C_  RR*  /\  B  e.  RR* )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  <_  B  <->  A. w  e.  ( A O B ) w  <_  B ) )
1614, 7, 15syl2anc 643 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  <_  B  <->  A. w  e.  ( A O B ) w  <_  B ) )
1712, 16mpbird 224 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  sup (
( A O B ) ,  RR* ,  <  )  <_  B )
18 simprl 733 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  sup ( ( A O B ) ,  RR* ,  <  )  <  w
)
1914ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  -> 
( A O B )  C_  RR* )
20 qre 10571 . . . . . . . . . . 11  |-  ( w  e.  QQ  ->  w  e.  RR )
2120rexrd 9126 . . . . . . . . . 10  |-  ( w  e.  QQ  ->  w  e.  RR* )
2221ad2antlr 708 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  w  e.  RR* )
23 simp1 957 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  A  e. 
RR* )
2423ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  A  e.  RR* )
25 supxrcl 10885 . . . . . . . . . . . . 13  |-  ( ( A O B ) 
C_  RR*  ->  sup (
( A O B ) ,  RR* ,  <  )  e.  RR* )
2614, 25syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  sup (
( A O B ) ,  RR* ,  <  )  e.  RR* )
2726ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  sup ( ( A O B ) ,  RR* ,  <  )  e.  RR* )
28 simp3 959 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( A O B )  =/=  (/) )
29 n0 3629 . . . . . . . . . . . . . 14  |-  ( ( A O B )  =/=  (/)  <->  E. w  w  e.  ( A O B ) )
3028, 29sylib 189 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  E. w  w  e.  ( A O B ) )
3123adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  A  e.  RR* )
3226adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  sup ( ( A O B ) ,  RR* ,  <  )  e.  RR* )
334simp2d 970 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  A R w )
34 ixxub.5 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w  ->  A  <_  w ) )
3531, 6, 34syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  ( A R w  ->  A  <_  w ) )
3633, 35mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  A  <_  w )
37 supxrub 10895 . . . . . . . . . . . . . . 15  |-  ( ( ( A O B )  C_  RR*  /\  w  e.  ( A O B ) )  ->  w  <_  sup ( ( A O B ) , 
RR* ,  <  ) )
3814, 37sylan 458 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  w  <_  sup ( ( A O B ) , 
RR* ,  <  ) )
3931, 6, 32, 36, 38xrletrd 10744 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  A  <_  sup ( ( A O B ) , 
RR* ,  <  ) )
4030, 39exlimddv 1648 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  A  <_  sup ( ( A O B ) ,  RR* ,  <  ) )
4140ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  A  <_  sup ( ( A O B ) , 
RR* ,  <  ) )
4224, 27, 22, 41, 18xrlelttrd 10742 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  A  <  w )
43 ixxub.4 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A R w ) )
4424, 22, 43syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  -> 
( A  <  w  ->  A R w ) )
4542, 44mpd 15 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  A R w )
46 simprr 734 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  w  <  B )
477ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  B  e.  RR* )
48 ixxub.2 . . . . . . . . . . 11  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w  <  B  ->  w S B ) )
4922, 47, 48syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  -> 
( w  <  B  ->  w S B ) )
5046, 49mpd 15 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  w S B )
513ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  -> 
( w  e.  ( A O B )  <-> 
( w  e.  RR*  /\  A R w  /\  w S B ) ) )
5222, 45, 50, 51mpbir3and 1137 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  w  e.  ( A O B ) )
5319, 52, 37syl2anc 643 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  w  <_  sup ( ( A O B ) , 
RR* ,  <  ) )
54 xrlenlt 9135 . . . . . . . 8  |-  ( ( w  e.  RR*  /\  sup ( ( A O B ) ,  RR* ,  <  )  e.  RR* )  ->  ( w  <_  sup ( ( A O B ) ,  RR* ,  <  )  <->  -.  sup (
( A O B ) ,  RR* ,  <  )  <  w ) )
5522, 27, 54syl2anc 643 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  -> 
( w  <_  sup ( ( A O B ) ,  RR* ,  <  )  <->  -.  sup (
( A O B ) ,  RR* ,  <  )  <  w ) )
5653, 55mpbid 202 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  -.  sup ( ( A O B ) , 
RR* ,  <  )  < 
w )
5718, 56pm2.65da 560 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  ->  -.  ( sup ( ( A O B ) , 
RR* ,  <  )  < 
w  /\  w  <  B ) )
5857nrexdv 2801 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  -.  E. w  e.  QQ  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  <  B ) )
59 qbtwnxr 10778 . . . . . 6  |-  ( ( sup ( ( A O B ) , 
RR* ,  <  )  e. 
RR*  /\  B  e.  RR* 
/\  sup ( ( A O B ) , 
RR* ,  <  )  < 
B )  ->  E. w  e.  QQ  ( sup (
( A O B ) ,  RR* ,  <  )  <  w  /\  w  <  B ) )
60593expia 1155 . . . . 5  |-  ( ( sup ( ( A O B ) , 
RR* ,  <  )  e. 
RR*  /\  B  e.  RR* )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  <  B  ->  E. w  e.  QQ  ( sup ( ( A O B ) , 
RR* ,  <  )  < 
w  /\  w  <  B ) ) )
6126, 7, 60syl2anc 643 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  <  B  ->  E. w  e.  QQ  ( sup ( ( A O B ) , 
RR* ,  <  )  < 
w  /\  w  <  B ) ) )
6258, 61mtod 170 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  -.  sup ( ( A O B ) ,  RR* ,  <  )  <  B
)
63 xrlenlt 9135 . . . 4  |-  ( ( B  e.  RR*  /\  sup ( ( A O B ) ,  RR* ,  <  )  e.  RR* )  ->  ( B  <_  sup ( ( A O B ) ,  RR* ,  <  )  <->  -.  sup (
( A O B ) ,  RR* ,  <  )  <  B ) )
647, 26, 63syl2anc 643 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( B  <_  sup ( ( A O B ) , 
RR* ,  <  )  <->  -.  sup (
( A O B ) ,  RR* ,  <  )  <  B ) )
6562, 64mpbird 224 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  B  <_  sup ( ( A O B ) ,  RR* ,  <  ) )
66 xrletri3 10737 . . 3  |-  ( ( sup ( ( A O B ) , 
RR* ,  <  )  e. 
RR*  /\  B  e.  RR* )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  =  B  <-> 
( sup ( ( A O B ) ,  RR* ,  <  )  <_  B  /\  B  <_  sup ( ( A O B ) ,  RR* ,  <  ) ) ) )
6726, 7, 66syl2anc 643 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  =  B  <-> 
( sup ( ( A O B ) ,  RR* ,  <  )  <_  B  /\  B  <_  sup ( ( A O B ) ,  RR* ,  <  ) ) ) )
6817, 65, 67mpbir2and 889 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  sup (
( A O B ) ,  RR* ,  <  )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   {crab 2701    C_ wss 3312   (/)c0 3620   class class class wbr 4204  (class class class)co 6073    e. cmpt2 6075   supcsup 7437   RR*cxr 9111    < clt 9112    <_ cle 9113   QQcq 10566
This theorem is referenced by:  ioopnfsup  11237  icopnfsup  11238  bndth  18975  ioorf  19457  ioorinv2  19459
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567
  Copyright terms: Public domain W3C validator