MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jad Structured version   Unicode version

Theorem jad 156
Description: Deduction form of ja 155. (Contributed by Scott Fenton, 13-Dec-2010.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Hypotheses
Ref Expression
jad.1  |-  ( ph  ->  ( -.  ps  ->  th ) )
jad.2  |-  ( ph  ->  ( ch  ->  th )
)
Assertion
Ref Expression
jad  |-  ( ph  ->  ( ( ps  ->  ch )  ->  th )
)

Proof of Theorem jad
StepHypRef Expression
1 jad.1 . . . 4  |-  ( ph  ->  ( -.  ps  ->  th ) )
21com12 29 . . 3  |-  ( -. 
ps  ->  ( ph  ->  th ) )
3 jad.2 . . . 4  |-  ( ph  ->  ( ch  ->  th )
)
43com12 29 . . 3  |-  ( ch 
->  ( ph  ->  th )
)
52, 4ja 155 . 2  |-  ( ( ps  ->  ch )  ->  ( ph  ->  th )
)
65com12 29 1  |-  ( ph  ->  ( ( ps  ->  ch )  ->  th )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem is referenced by:  pm2.6  164  pm2.65  166  merco2  1510  nfimdOLD  1828  hbimdOLD  1835  ax11indi  2273  wereu2  4579  isfin7-2  8276  axpowndlem3  8474  lo1bdd2  12318  pntlem3  21303  hbimtg  25434  arg-ax  26166  onsuct0  26191  ordcmp  26197  wl-adnestantd  26219  hbimpg  28641
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
  Copyright terms: Public domain W3C validator