MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jarr Unicode version

Theorem jarr 91
Description: Elimination of a nested antecedent as a kind of reversal of inference ja 153. (Contributed by Wolf Lammen, 9-May-2013.)
Assertion
Ref Expression
jarr  |-  ( ( ( ph  ->  ps )  ->  ch )  -> 
( ps  ->  ch ) )

Proof of Theorem jarr
StepHypRef Expression
1 ax-1 5 . 2  |-  ( ps 
->  ( ph  ->  ps ) )
21imim1i 54 1  |-  ( ( ( ph  ->  ps )  ->  ch )  -> 
( ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem is referenced by:  loolinALT  95  loowoz  96  ax3h  27964
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 8
  Copyright terms: Public domain W3C validator