MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcai Unicode version

Theorem jcai 522
Description: Deduction replacing implication with conjunction. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
jcai.1  |-  ( ph  ->  ps )
jcai.2  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
jcai  |-  ( ph  ->  ( ps  /\  ch ) )

Proof of Theorem jcai
StepHypRef Expression
1 jcai.1 . 2  |-  ( ph  ->  ps )
2 jcai.2 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2mpd 14 . 2  |-  ( ph  ->  ch )
41, 3jca 518 1  |-  ( ph  ->  ( ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem is referenced by:  reu6  2954  f1ocnv2d  6068  onfin2  7052  mpfrcl  19402  f1o3d  23037  altopthsn  24495  iintlem1  25610  iint  25612  qirropth  26993
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator