MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcai Structured version   Unicode version

Theorem jcai 524
Description: Deduction replacing implication with conjunction. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
jcai.1  |-  ( ph  ->  ps )
jcai.2  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
jcai  |-  ( ph  ->  ( ps  /\  ch ) )

Proof of Theorem jcai
StepHypRef Expression
1 jcai.1 . 2  |-  ( ph  ->  ps )
2 jcai.2 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2mpd 15 . 2  |-  ( ph  ->  ch )
41, 3jca 520 1  |-  ( ph  ->  ( ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360
This theorem is referenced by:  reu6  3125  f1ocnv2d  6298  onfin2  7301  mpfrcl  19944  f1o3d  24046  altopthsn  25811  volsupnfl  26263  mbfresfi  26265  qirropth  26985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator