Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.19 Unicode version

Theorem jm2.19 27086
Description: Lemma 2.19 of [JonesMatijasevic] p. 696. Transfer divisibility constraints between Y-values and their indices. (Contributed by Stefan O'Rear, 24-Sep-2014.)
Assertion
Ref Expression
jm2.19  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( A Yrm  M
)  ||  ( A Yrm  N
) ) )

Proof of Theorem jm2.19
StepHypRef Expression
1 rmyeq0 27040 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( N  =  0  <->  ( A Yrm  N
)  =  0 ) )
213adant2 974 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  <->  ( A Yrm  N
)  =  0 ) )
3 0dvds 12549 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
433ad2ant3 978 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  ||  N  <->  N  = 
0 ) )
5 frmy 26999 . . . . . . . 8  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
65fovcl 5949 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
763adant2 974 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
8 0dvds 12549 . . . . . 6  |-  ( ( A Yrm  N )  e.  ZZ  ->  ( 0  ||  ( A Yrm 
N )  <->  ( A Yrm  N
)  =  0 ) )
97, 8syl 15 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  ||  ( A Yrm  N
)  <->  ( A Yrm  N )  =  0 ) )
102, 4, 93bitr4d 276 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  ||  N  <->  0  ||  ( A Yrm  N ) ) )
1110adantr 451 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( 0  ||  N  <->  0 
||  ( A Yrm  N ) ) )
12 simpr 447 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  M  =  0 )
1312breq1d 4033 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( M  ||  N  <->  0 
||  N ) )
1412oveq2d 5874 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( A Yrm  M )  =  ( A Yrm  0 ) )
15 simpl1 958 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  A  e.  ( ZZ>= ` 
2 ) )
16 rmy0 27014 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
1715, 16syl 15 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( A Yrm  0 )  =  0 )
1814, 17eqtrd 2315 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( A Yrm  M )  =  0 )
1918breq1d 4033 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( ( A Yrm  M ) 
||  ( A Yrm  N )  <->  0  ||  ( A Yrm  N ) ) )
2011, 13, 193bitr4d 276 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( M  ||  N  <->  ( A Yrm  M )  ||  ( A Yrm 
N ) ) )
215fovcl 5949 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
22213adant3 975 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
23 dvds0 12544 . . . . . . . 8  |-  ( ( A Yrm  M )  e.  ZZ  ->  ( A Yrm  M )  ||  0 )
2422, 23syl 15 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
M )  ||  0
)
25163ad2ant1 976 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm  0 )  =  0 )
2624, 25breqtrrd 4049 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
M )  ||  ( A Yrm  0 ) )
27 oveq2 5866 . . . . . . 7  |-  ( ( N  mod  ( abs `  M ) )  =  0  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =  ( A Yrm  0 ) )
2827breq2d 4035 . . . . . 6  |-  ( ( N  mod  ( abs `  M ) )  =  0  ->  ( ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <->  ( A Yrm  M ) 
||  ( A Yrm  0 ) ) )
2926, 28syl5ibrcom 213 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( N  mod  ( abs `  M ) )  =  0  ->  ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
3029adantr 451 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  mod  ( abs `  M ) )  =  0  ->  ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
31 zre 10028 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  RR )
32313ad2ant3 978 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
3332ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  N  e.  RR )
34 zcn 10029 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  M  e.  CC )
35343ad2ant2 977 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
3635ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  M  e.  CC )
37 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  M  =/=  0 )
3836, 37absrpcld 11930 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  M )  e.  RR+ )
39 modlt 10981 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  ( abs `  M )  e.  RR+ )  ->  ( N  mod  ( abs `  M
) )  <  ( abs `  M ) )
4033, 38, 39syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  <  ( abs `  M ) )
41 simpll1 994 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  A  e.  ( ZZ>= `  2 )
)
42 simpll3 996 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  N  e.  ZZ )
43 simpll2 995 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  M  e.  ZZ )
44 nnabscl 11809 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
4543, 37, 44syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  M )  e.  NN )
4642, 45zmodcld 10990 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  e.  NN0 )
47 nn0abscl 11797 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
48473ad2ant2 977 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  M )  e. 
NN0 )
4948ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  M )  e.  NN0 )
50 ltrmynn0 27035 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  mod  ( abs `  M
) )  e.  NN0  /\  ( abs `  M
)  e.  NN0 )  ->  ( ( N  mod  ( abs `  M ) )  <  ( abs `  M )  <->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <  ( A Yrm  ( abs `  M ) ) ) )
5141, 46, 49, 50syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( N  mod  ( abs `  M
) )  <  ( abs `  M )  <->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <  ( A Yrm  ( abs `  M ) ) ) )
5240, 51mpbid 201 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <  ( A Yrm  ( abs `  M ) ) )
5346nn0zd 10115 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  e.  ZZ )
54 rmyabs 27045 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  mod  ( abs `  M
) )  e.  ZZ )  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  =  ( A Yrm  ( abs `  ( N  mod  ( abs `  M
) ) ) ) )
5541, 53, 54syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  =  ( A Yrm  ( abs `  ( N  mod  ( abs `  M
) ) ) ) )
5633, 38modcld 10977 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  e.  RR )
57 modge0 10980 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  ( abs `  M )  e.  RR+ )  ->  0  <_  ( N  mod  ( abs `  M ) ) )
5833, 38, 57syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  0  <_  ( N  mod  ( abs `  M ) ) )
5956, 58absidd 11905 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( N  mod  ( abs `  M ) ) )  =  ( N  mod  ( abs `  M
) ) )
6059oveq2d 5874 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  ( abs `  ( N  mod  ( abs `  M
) ) ) )  =  ( A Yrm  ( N  mod  ( abs `  M
) ) ) )
6155, 60eqtrd 2315 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  =  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )
62 rmyabs 27045 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( abs `  ( A Yrm  M ) )  =  ( A Yrm  ( abs `  M ) ) )
6341, 43, 62syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  M ) )  =  ( A Yrm  ( abs `  M ) ) )
6452, 61, 633brtr4d 4053 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  < 
( abs `  ( A Yrm 
M ) ) )
655fovcl 5949 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  mod  ( abs `  M
) )  e.  ZZ )  ->  ( A Yrm  ( N  mod  ( abs `  M
) ) )  e.  ZZ )
6641, 53, 65syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  e.  ZZ )
67 nn0abscl 11797 . . . . . . . . . . 11  |-  ( ( A Yrm  ( N  mod  ( abs `  M ) ) )  e.  ZZ  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  e.  NN0 )
6866, 67syl 15 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  e. 
NN0 )
6968nn0red 10019 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  e.  RR )
7022ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  M
)  e.  ZZ )
71 nn0abscl 11797 . . . . . . . . . . 11  |-  ( ( A Yrm  M )  e.  ZZ  ->  ( abs `  ( A Yrm 
M ) )  e. 
NN0 )
7270, 71syl 15 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  M ) )  e.  NN0 )
7372nn0red 10019 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  M ) )  e.  RR )
7469, 73ltnled 8966 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( abs `  ( A Yrm  ( N  mod  ( abs `  M
) ) ) )  <  ( abs `  ( A Yrm 
M ) )  <->  -.  ( abs `  ( A Yrm  M ) )  <_  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) ) )
7564, 74mpbid 201 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  -.  ( abs `  ( A Yrm  M ) )  <_  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
76 simpr 447 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  =/=  0
)
77 rmyeq0 27040 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  mod  ( abs `  M
) )  e.  ZZ )  ->  ( ( N  mod  ( abs `  M
) )  =  0  <-> 
( A Yrm  ( N  mod  ( abs `  M ) ) )  =  0 ) )
7841, 53, 77syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( N  mod  ( abs `  M
) )  =  0  <-> 
( A Yrm  ( N  mod  ( abs `  M ) ) )  =  0 ) )
7978necon3bid 2481 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( N  mod  ( abs `  M
) )  =/=  0  <->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =/=  0 ) )
8076, 79mpbid 201 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =/=  0 )
81 dvdsleabs2 27077 . . . . . . . 8  |-  ( ( ( A Yrm  M )  e.  ZZ  /\  ( A Yrm  ( N  mod  ( abs `  M ) ) )  e.  ZZ  /\  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =/=  0 )  ->  ( ( A Yrm  M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  ->  ( abs `  ( A Yrm 
M ) )  <_ 
( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) ) )
8270, 66, 80, 81syl3anc 1182 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  ->  ( abs `  ( A Yrm  M ) )  <_  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) ) )
8375, 82mtod 168 . . . . . 6  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  -.  ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )
8483ex 423 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  mod  ( abs `  M ) )  =/=  0  ->  -.  ( A Yrm  M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
8584necon4ad 2507 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( A Yrm  M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  ->  ( N  mod  ( abs `  M
) )  =  0 ) )
8630, 85impbid 183 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  mod  ( abs `  M ) )  =  0  <->  ( A Yrm  M
)  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
87 simpl2 959 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  M  e.  ZZ )
88 simpl3 960 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  N  e.  ZZ )
89 simpr 447 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  M  =/=  0 )
90 dvdsabsmod0 27079 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  =/=  0 )  ->  ( M  ||  N  <->  ( N  mod  ( abs `  M
) )  =  0 ) )
9187, 88, 89, 90syl3anc 1182 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( M  ||  N  <->  ( N  mod  ( abs `  M
) )  =  0 ) )
92 simpl1 958 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  A  e.  ( ZZ>= `  2 )
)
9332adantr 451 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  N  e.  RR )
94 zre 10028 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  RR )
95943ad2ant2 977 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  RR )
9695adantr 451 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  M  e.  RR )
97 modabsdifz 27078 . . . . . . 7  |-  ( ( N  e.  RR  /\  M  e.  RR  /\  M  =/=  0 )  ->  (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  ZZ )
9893, 96, 89, 97syl3anc 1182 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  ZZ )
9998znegcld 10119 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  -u (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  ZZ )
100 jm2.19lem4 27085 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -u (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  ZZ )  ->  ( ( A Yrm  M )  ||  ( A Yrm  N )  <->  ( A Yrm  M ) 
||  ( A Yrm  ( N  +  ( -u (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) ) ) ) )
10192, 87, 88, 99, 100syl121anc 1187 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( A Yrm  M )  ||  ( A Yrm  N )  <->  ( A Yrm  M
)  ||  ( A Yrm  ( N  +  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) ) ) )
10232recnd 8861 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
103102adantr 451 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  N  e.  CC )
10435adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  M  e.  CC )
105104, 89absrpcld 11930 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( abs `  M )  e.  RR+ )
10693, 105modcld 10977 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  mod  ( abs `  M
) )  e.  RR )
107106recnd 8861 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  mod  ( abs `  M
) )  e.  CC )
108103, 107subcld 9157 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  -  ( N  mod  ( abs `  M
) ) )  e.  CC )
109108, 104, 89divcld 9536 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  CC )
110109, 104mulneg1d 9232 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M )  =  -u ( ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M
)  x.  M ) )
111110oveq2d 5874 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  +  ( -u (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) )  =  ( N  +  -u (
( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) )
112109, 104mulcld 8855 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M )  e.  CC )
113103, 112negsubd 9163 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  +  -u ( ( ( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) )  =  ( N  -  ( ( ( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) ) )
114108, 104, 89divcan1d 9537 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M )  =  ( N  -  ( N  mod  ( abs `  M
) ) ) )
115114oveq2d 5874 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  -  ( (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) )  =  ( N  -  ( N  -  ( N  mod  ( abs `  M ) ) ) ) )
116103, 107nncand 9162 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  -  ( N  -  ( N  mod  ( abs `  M ) ) ) )  =  ( N  mod  ( abs `  M ) ) )
117115, 116eqtrd 2315 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  -  ( (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) )  =  ( N  mod  ( abs `  M ) ) )
118111, 113, 1173eqtrrd 2320 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  mod  ( abs `  M
) )  =  ( N  +  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) )
119118oveq2d 5874 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =  ( A Yrm  ( N  +  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) ) )
120119breq2d 4035 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( A Yrm  M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <->  ( A Yrm  M
)  ||  ( A Yrm  ( N  +  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) ) ) )
121101, 120bitr4d 247 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( A Yrm  M )  ||  ( A Yrm  N )  <->  ( A Yrm  M
)  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
12286, 91, 1213bitr4d 276 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( M  ||  N  <->  ( A Yrm  M
)  ||  ( A Yrm  N
) ) )
12320, 122pm2.61dane 2524 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( A Yrm  M
)  ||  ( A Yrm  N
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037   -ucneg 9038    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354    mod cmo 10973   abscabs 11719    || cdivides 12531   Yrm crmy 26986
This theorem is referenced by:  jm2.20nn  27090
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-dvds 12532  df-gcd 12686  df-numer 12806  df-denom 12807  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914  df-squarenn 26926  df-pell1qr 26927  df-pell14qr 26928  df-pell1234qr 26929  df-pellfund 26930  df-rmx 26987  df-rmy 26988
  Copyright terms: Public domain W3C validator