Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.22 Structured version   Unicode version

Theorem jm2.22 27066
Description: Lemma for jm2.20nn 27068. Applying binomial theorem and taking irrational part. (Contributed by Stefan O'Rear, 26-Sep-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
jm2.22  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm  ( N  x.  J
) )  =  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) )
Distinct variable groups:    A, i, x    i, N, x    i, J, x

Proof of Theorem jm2.22
StepHypRef Expression
1 nn0z 10304 . . . . 5  |-  ( J  e.  NN0  ->  J  e.  ZZ )
2 jm2.21 27065 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  ZZ )  ->  (
( A Xrm  ( N  x.  J ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  ( N  x.  J ) ) ) )  =  ( ( ( A Xrm  N )  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ) ^ J
) )
31, 2syl3an3 1219 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( A Xrm  ( N  x.  J ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  ( N  x.  J ) ) ) )  =  ( ( ( A Xrm  N )  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ) ^ J
) )
4 frmx 26976 . . . . . . . 8  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
54fovcl 6175 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
653adant3 977 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Xrm 
N )  e.  NN0 )
76nn0cnd 10276 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Xrm 
N )  e.  CC )
8 eluzelz 10496 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
9 zsqcl 11452 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
10 peano2zm 10320 . . . . . . . . . 10  |-  ( ( A ^ 2 )  e.  ZZ  ->  (
( A ^ 2 )  -  1 )  e.  ZZ )
118, 9, 103syl 19 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  ZZ )
12113ad2ant1 978 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( A ^ 2 )  -  1 )  e.  ZZ )
1312zcnd 10376 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( A ^ 2 )  -  1 )  e.  CC )
1413sqrcld 12239 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  CC )
15 frmy 26977 . . . . . . . . 9  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
1615fovcl 6175 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
17163adant3 977 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm 
N )  e.  ZZ )
1817zcnd 10376 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm 
N )  e.  CC )
1914, 18mulcld 9108 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) )  e.  CC )
20 simp3 959 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  J  e.  NN0 )
21 binom 12609 . . . . 5  |-  ( ( ( A Xrm  N )  e.  CC  /\  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) )  e.  CC  /\  J  e.  NN0 )  -> 
( ( ( A Xrm  N )  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ) ^ J
)  =  sum_ i  e.  ( 0 ... J
) ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) ) )
227, 19, 20, 21syl3anc 1184 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( ( A Xrm  N )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ) ^ J )  = 
sum_ i  e.  ( 0 ... J ) ( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) ) )
23 rabnc 3651 . . . . . . 7  |-  ( { x  e.  ( 0 ... J )  |  2  ||  x }  i^i  { x  e.  ( 0 ... J )  |  -.  2  ||  x } )  =  (/)
2423a1i 11 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( { x  e.  (
0 ... J )  |  2  ||  x }  i^i  { x  e.  ( 0 ... J )  |  -.  2  ||  x } )  =  (/) )
25 rabxm 3650 . . . . . . 7  |-  ( 0 ... J )  =  ( { x  e.  ( 0 ... J
)  |  2  ||  x }  u.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x } )
2625a1i 11 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
0 ... J )  =  ( { x  e.  ( 0 ... J
)  |  2  ||  x }  u.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x } ) )
27 fzfid 11312 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
0 ... J )  e. 
Fin )
28 simpl3 962 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  J  e.  NN0 )
29 elfzelz 11059 . . . . . . . . . 10  |-  ( i  e.  ( 0 ... J )  ->  i  e.  ZZ )
3029adantl 453 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  i  e.  ZZ )
31 bccl 11613 . . . . . . . . . 10  |-  ( ( J  e.  NN0  /\  i  e.  ZZ )  ->  ( J  _C  i
)  e.  NN0 )
3231nn0zd 10373 . . . . . . . . 9  |-  ( ( J  e.  NN0  /\  i  e.  ZZ )  ->  ( J  _C  i
)  e.  ZZ )
3328, 30, 32syl2anc 643 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( J  _C  i )  e.  ZZ )
3433zcnd 10376 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( J  _C  i )  e.  CC )
356nn0zd 10373 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Xrm 
N )  e.  ZZ )
3635adantr 452 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( A Xrm 
N )  e.  ZZ )
3736zcnd 10376 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( A Xrm 
N )  e.  CC )
38 fznn0sub 11085 . . . . . . . . . 10  |-  ( i  e.  ( 0 ... J )  ->  ( J  -  i )  e.  NN0 )
3938adantl 453 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( J  -  i )  e.  NN0 )
4037, 39expcld 11523 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A Xrm  N ) ^
( J  -  i
) )  e.  CC )
4112adantr 452 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A ^ 2 )  -  1 )  e.  ZZ )
4241zcnd 10376 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A ^ 2 )  -  1 )  e.  CC )
4342sqrcld 12239 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  CC )
4417adantr 452 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( A Yrm 
N )  e.  ZZ )
4544zcnd 10376 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( A Yrm 
N )  e.  CC )
4643, 45mulcld 9108 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) )  e.  CC )
47 elfznn0 11083 . . . . . . . . . 10  |-  ( i  e.  ( 0 ... J )  ->  i  e.  NN0 )
4847adantl 453 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  i  e.  NN0 )
4946, 48expcld 11523 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
)  e.  CC )
5040, 49mulcld 9108 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) )  e.  CC )
5134, 50mulcld 9108 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) )  e.  CC )
5224, 26, 27, 51fsumsplit 12533 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  ( 0 ... J
) ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  =  (
sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  +  sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) ) ) )
53 fzfi 11311 . . . . . . . . . 10  |-  ( 0 ... J )  e. 
Fin
54 ssrab2 3428 . . . . . . . . . 10  |-  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  C_  (
0 ... J )
55 ssfi 7329 . . . . . . . . . 10  |-  ( ( ( 0 ... J
)  e.  Fin  /\  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  C_  ( 0 ... J ) )  ->  { x  e.  (
0 ... J )  |  -.  2  ||  x }  e.  Fin )
5653, 54, 55mp2an 654 . . . . . . . . 9  |-  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  e.  Fin
5756a1i 11 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  e.  Fin )
58 breq2 4216 . . . . . . . . . . 11  |-  ( x  =  i  ->  (
2  ||  x  <->  2  ||  i ) )
5958notbid 286 . . . . . . . . . 10  |-  ( x  =  i  ->  ( -.  2  ||  x  <->  -.  2  ||  i ) )
6059elrab 3092 . . . . . . . . 9  |-  ( i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  <->  ( i  e.  ( 0 ... J
)  /\  -.  2  ||  i ) )
6134adantrr 698 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( J  _C  i )  e.  CC )
6240adantrr 698 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( A Xrm 
N ) ^ ( J  -  i )
)  e.  CC )
63 zexpcl 11396 . . . . . . . . . . . . . . 15  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  i  e. 
NN0 )  ->  (
( A Yrm  N ) ^
i )  e.  ZZ )
6417, 47, 63syl2an 464 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A Yrm  N ) ^
i )  e.  ZZ )
6564zcnd 10376 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A Yrm  N ) ^
i )  e.  CC )
6665adantrr 698 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( A Yrm 
N ) ^ i
)  e.  CC )
6742adantrr 698 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( A ^ 2 )  - 
1 )  e.  CC )
6829adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  i  e.  ZZ )
69 simpr 448 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  -.  2  ||  i )
70 1z 10311 . . . . . . . . . . . . . . . . . 18  |-  1  e.  ZZ
7170a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  1  e.  ZZ )
72 2prm 13095 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  Prime
73 nprmdvds1 13111 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  e.  Prime  ->  -.  2  ||  1 )
7472, 73ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  -.  2  ||  1
7574a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  -.  2  ||  1 )
76 omoe 13186 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  ZZ  /\ 
-.  2  ||  i
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  (
i  -  1 ) )
7768, 69, 71, 75, 76syl22anc 1185 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  2  ||  (
i  -  1 ) )
78 2z 10312 . . . . . . . . . . . . . . . . . 18  |-  2  e.  ZZ
7978a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  2  e.  ZZ )
80 2ne0 10083 . . . . . . . . . . . . . . . . . 18  |-  2  =/=  0
8180a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  2  =/=  0
)
82 peano2zm 10320 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ZZ  ->  (
i  -  1 )  e.  ZZ )
8329, 82syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  ( 0 ... J )  ->  (
i  -  1 )  e.  ZZ )
8483adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( i  - 
1 )  e.  ZZ )
85 dvdsval2 12855 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  (
i  -  1 )  e.  ZZ )  -> 
( 2  ||  (
i  -  1 )  <-> 
( ( i  - 
1 )  /  2
)  e.  ZZ ) )
8679, 81, 84, 85syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( 2  ||  ( i  -  1 )  <->  ( ( i  -  1 )  / 
2 )  e.  ZZ ) )
8777, 86mpbid 202 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( ( i  -  1 )  / 
2 )  e.  ZZ )
8883zred 10375 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ( 0 ... J )  ->  (
i  -  1 )  e.  RR )
8988adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( i  - 
1 )  e.  RR )
90 dvds0 12865 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  e.  ZZ  ->  2  ||  0 )
9178, 90ax-mp 8 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  ||  0
92 breq2 4216 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  =  0  ->  (
2  ||  i  <->  2  ||  0 ) )
9391, 92mpbiri 225 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  =  0  ->  2  ||  i )
9493con3i 129 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  2  ||  i  ->  -.  i  =  0
)
9594adantl 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  -.  i  = 
0 )
9647adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  i  e.  NN0 )
97 elnn0 10223 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  NN0  <->  ( i  e.  NN  \/  i  =  0 ) )
9896, 97sylib 189 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( i  e.  NN  \/  i  =  0 ) )
99 orel2 373 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  i  =  0  -> 
( ( i  e.  NN  \/  i  =  0 )  ->  i  e.  NN ) )
10095, 98, 99sylc 58 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  i  e.  NN )
101 nnm1nn0 10261 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  NN  ->  (
i  -  1 )  e.  NN0 )
102100, 101syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( i  - 
1 )  e.  NN0 )
103102nn0ge0d 10277 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  0  <_  (
i  -  1 ) )
104 2re 10069 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR
105104a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  2  e.  RR )
106 2pos 10082 . . . . . . . . . . . . . . . . 17  |-  0  <  2
107106a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  0  <  2
)
108 divge0 9879 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( i  - 
1 )  e.  RR  /\  0  <_  ( i  -  1 ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <_  ( (
i  -  1 )  /  2 ) )
10989, 103, 105, 107, 108syl22anc 1185 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  0  <_  (
( i  -  1 )  /  2 ) )
110 elnn0z 10294 . . . . . . . . . . . . . . 15  |-  ( ( ( i  -  1 )  /  2 )  e.  NN0  <->  ( ( ( i  -  1 )  /  2 )  e.  ZZ  /\  0  <_ 
( ( i  - 
1 )  /  2
) ) )
11187, 109, 110sylanbrc 646 . . . . . . . . . . . . . 14  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( ( i  -  1 )  / 
2 )  e.  NN0 )
112111adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
i  -  1 )  /  2 )  e. 
NN0 )
11367, 112expcld 11523 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) )  e.  CC )
11466, 113mulcld 9108 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) )  e.  CC )
11562, 114mulcld 9108 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) )  e.  CC )
11661, 115mulcld 9108 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  e.  CC )
11760, 116sylan2b 462 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x } )  ->  (
( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) ) )  e.  CC )
11857, 14, 117fsummulc2 12567 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) )  = 
sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  (
( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) ) ) ) )
11943adantrr 698 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  CC )
120119, 61, 115mul12d 9275 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) ) ) )  =  ( ( J  _C  i
)  x.  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) ) )
121119, 62, 114mul12d 9275 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) )
12243, 48expcld 11523 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i )  e.  CC )
123122adantrr 698 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) ) ^
i )  e.  CC )
12466, 123mulcomd 9109 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Yrm  N ) ^
i )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i ) )  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i )  x.  ( ( A Yrm  N ) ^ i ) ) )
125119, 66, 113mul12d 9275 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) )  =  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) ) )
126 2nn0 10238 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  NN0
127126a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  2  e.  NN0 )
128119, 112, 127expmuld 11526 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) ) ^
( 2  x.  (
( i  -  1 )  /  2 ) ) )  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ 2 ) ^ ( ( i  -  1 )  / 
2 ) ) )
12983zcnd 10376 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  e.  ( 0 ... J )  ->  (
i  -  1 )  e.  CC )
130129ad2antrl 709 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( i  -  1 )  e.  CC )
131 2cn 10070 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  CC
132131a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  2  e.  CC )
13380a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  2  =/=  0 )
134130, 132, 133divcan2d 9792 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( 2  x.  ( ( i  -  1 )  / 
2 ) )  =  ( i  -  1 ) )
135134oveq2d 6097 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) ) ^
( 2  x.  (
( i  -  1 )  /  2 ) ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ ( i  -  1 ) ) )
13667sqsqrd 12241 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) ) ^
2 )  =  ( ( A ^ 2 )  -  1 ) )
137136oveq1d 6096 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( sqr `  (
( A ^ 2 )  -  1 ) ) ^ 2 ) ^ ( ( i  -  1 )  / 
2 ) )  =  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) )
138128, 135, 1373eqtr3rd 2477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ ( i  -  1 ) ) )
139138oveq1d 6096 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) )  x.  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ ( i  -  1 ) )  x.  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )
140119, 113mulcomd 9109 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) )  =  ( ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) )  x.  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
141100adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  i  e.  NN )
142 expm1t 11408 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  CC  /\  i  e.  NN )  ->  ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i )  =  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ ( i  - 
1 ) )  x.  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )
143119, 141, 142syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) ) ^
i )  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ ( i  -  1 ) )  x.  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )
144139, 140, 1433eqtr4d 2478 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i ) )
145144oveq2d 6097 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Yrm  N ) ^
i )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) )  =  ( ( ( A Yrm  N ) ^
i )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i ) ) )
146125, 145eqtrd 2468 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) )  =  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ i ) ) )
14743, 45, 48mulexpd 11538 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
)  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i )  x.  ( ( A Yrm  N ) ^ i ) ) )
148147adantrr 698 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
)  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i )  x.  ( ( A Yrm  N ) ^ i ) ) )
149124, 146, 1483eqtr4d 2478 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) )  =  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) )
150149oveq2d 6097 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Xrm  N ) ^
( J  -  i
) )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )
151121, 150eqtrd 2468 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )
152151oveq2d 6097 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( J  _C  i )  x.  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) ) ) )  =  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) ) )
153120, 152eqtrd 2468 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) ) ) )  =  ( ( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) ) )
15460, 153sylan2b 462 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x } )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) )  =  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) ) )
155154sumeq2dv 12497 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) ) ) )  =  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) ) )
156118, 155eqtr2d 2469 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) )
157156oveq2d 6097 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( sum_ i  e.  { x  e.  ( 0 ... J
)  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  +  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) ) )  =  ( sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) ) )
15852, 157eqtrd 2468 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  ( 0 ... J
) ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  =  (
sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) ) ) )
1593, 22, 1583eqtrd 2472 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( A Xrm  ( N  x.  J ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  ( N  x.  J ) ) ) )  =  ( sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) ) ) )
160 rmspecsqrnq 26969 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  ( CC  \  QQ ) )
1611603ad2ant1 978 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  ( CC  \  QQ ) )
162 nn0ssq 10582 . . . . 5  |-  NN0  C_  QQ
163 simp1 957 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  A  e.  ( ZZ>= `  2 )
)
164 simp2 958 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  N  e.  ZZ )
16513ad2ant3 980 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  J  e.  ZZ )
166164, 165zmulcld 10381 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( N  x.  J )  e.  ZZ )
1674fovcl 6175 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  x.  J )  e.  ZZ )  ->  ( A Xrm  ( N  x.  J
) )  e.  NN0 )
168163, 166, 167syl2anc 643 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Xrm  ( N  x.  J
) )  e.  NN0 )
169162, 168sseldi 3346 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Xrm  ( N  x.  J
) )  e.  QQ )
170 zssq 10581 . . . . 5  |-  ZZ  C_  QQ
17115fovcl 6175 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  x.  J )  e.  ZZ )  ->  ( A Yrm  ( N  x.  J
) )  e.  ZZ )
172163, 166, 171syl2anc 643 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm  ( N  x.  J
) )  e.  ZZ )
173170, 172sseldi 3346 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm  ( N  x.  J
) )  e.  QQ )
174 ssrab2 3428 . . . . . . . 8  |-  { x  e.  ( 0 ... J
)  |  2  ||  x }  C_  ( 0 ... J )
175 ssfi 7329 . . . . . . . 8  |-  ( ( ( 0 ... J
)  e.  Fin  /\  { x  e.  ( 0 ... J )  |  2  ||  x }  C_  ( 0 ... J
) )  ->  { x  e.  ( 0 ... J
)  |  2  ||  x }  e.  Fin )
17653, 174, 175mp2an 654 . . . . . . 7  |-  { x  e.  ( 0 ... J
)  |  2  ||  x }  e.  Fin
177176a1i 11 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  { x  e.  ( 0 ... J
)  |  2  ||  x }  e.  Fin )
17858elrab 3092 . . . . . . 7  |-  ( i  e.  { x  e.  ( 0 ... J
)  |  2  ||  x }  <->  ( i  e.  ( 0 ... J
)  /\  2  ||  i ) )
17933adantrr 698 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( J  _C  i )  e.  ZZ )
180 zexpcl 11396 . . . . . . . . . . 11  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( J  -  i )  e. 
NN0 )  ->  (
( A Xrm  N ) ^
( J  -  i
) )  e.  ZZ )
18136, 39, 180syl2anc 643 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A Xrm  N ) ^
( J  -  i
) )  e.  ZZ )
182181adantrr 698 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( A Xrm  N ) ^ ( J  -  i ) )  e.  ZZ )
18343adantrr 698 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  CC )
18445adantrr 698 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( A Yrm  N )  e.  CC )
18547ad2antrl 709 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  i  e.  NN0 )
186183, 184, 185mulexpd 11538 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i )  =  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ i )  x.  ( ( A Yrm  N ) ^ i ) ) )
18729zcnd 10376 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  ( 0 ... J )  ->  i  e.  CC )
188187adantl 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  i  e.  CC )
189131a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  2  e.  CC )
19080a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  2  =/=  0 )
191188, 189, 190divcan2d 9792 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
2  x.  ( i  /  2 ) )  =  i )
192191eqcomd 2441 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  i  =  ( 2  x.  ( i  /  2
) ) )
193192adantrr 698 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  i  =  ( 2  x.  ( i  /  2 ) ) )
194193oveq2d 6097 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^
2 )  -  1 ) ) ^ i
)  =  ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ ( 2  x.  ( i  /  2
) ) ) )
19578a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN0  ->  2  e.  ZZ )
19680a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN0  ->  2  =/=  0 )
197 nn0z 10304 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN0  ->  i  e.  ZZ )
198 dvdsval2 12855 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  i  e.  ZZ )  ->  (
2  ||  i  <->  ( i  /  2 )  e.  ZZ ) )
199195, 196, 197, 198syl3anc 1184 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  NN0  ->  ( 2 
||  i  <->  ( i  /  2 )  e.  ZZ ) )
200199biimpa 471 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
( i  /  2
)  e.  ZZ )
201 nn0re 10230 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN0  ->  i  e.  RR )
202201adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
i  e.  RR )
203 nn0ge0 10247 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN0  ->  0  <_ 
i )
204203adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
0  <_  i )
205104a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
2  e.  RR )
206106a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
0  <  2 )
207 divge0 9879 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( i  e.  RR  /\  0  <_  i )  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  0  <_  ( i  /  2 ) )
208202, 204, 205, 206, 207syl22anc 1185 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
0  <_  ( i  /  2 ) )
209 elnn0z 10294 . . . . . . . . . . . . . . . . 17  |-  ( ( i  /  2 )  e.  NN0  <->  ( ( i  /  2 )  e.  ZZ  /\  0  <_ 
( i  /  2
) ) )
210200, 208, 209sylanbrc 646 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
( i  /  2
)  e.  NN0 )
21147, 210sylan 458 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  ( 0 ... J )  /\  2  ||  i )  -> 
( i  /  2
)  e.  NN0 )
212211adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( i  / 
2 )  e.  NN0 )
213126a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  2  e.  NN0 )
214183, 212, 213expmuld 11526 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^
2 )  -  1 ) ) ^ (
2  x.  ( i  /  2 ) ) )  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ 2 ) ^ ( i  / 
2 ) ) )
21542adantrr 698 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( A ^ 2 )  - 
1 )  e.  CC )
216215sqsqrd 12241 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^
2 )  -  1 ) ) ^ 2 )  =  ( ( A ^ 2 )  -  1 ) )
217216oveq1d 6096 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ 2 ) ^
( i  /  2
) )  =  ( ( ( A ^
2 )  -  1 ) ^ ( i  /  2 ) ) )
218194, 214, 2173eqtrd 2472 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^
2 )  -  1 ) ) ^ i
)  =  ( ( ( A ^ 2 )  -  1 ) ^ ( i  / 
2 ) ) )
219218oveq1d 6096 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ i )  x.  ( ( A Yrm  N ) ^ i ) )  =  ( ( ( ( A ^ 2 )  -  1 ) ^ ( i  / 
2 ) )  x.  ( ( A Yrm  N ) ^ i ) ) )
220186, 219eqtrd 2468 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i )  =  ( ( ( ( A ^ 2 )  -  1 ) ^ ( i  / 
2 ) )  x.  ( ( A Yrm  N ) ^ i ) ) )
221 zexpcl 11396 . . . . . . . . . . . 12  |-  ( ( ( ( A ^
2 )  -  1 )  e.  ZZ  /\  ( i  /  2
)  e.  NN0 )  ->  ( ( ( A ^ 2 )  - 
1 ) ^ (
i  /  2 ) )  e.  ZZ )
22212, 211, 221syl2an 464 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( A ^ 2 )  -  1 ) ^
( i  /  2
) )  e.  ZZ )
22364adantrr 698 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( A Yrm  N ) ^ i )  e.  ZZ )
224222, 223zmulcld 10381 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( ( A ^ 2 )  -  1 ) ^ ( i  / 
2 ) )  x.  ( ( A Yrm  N ) ^ i ) )  e.  ZZ )
225220, 224eqeltrd 2510 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i )  e.  ZZ )
226182, 225zmulcld 10381 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) )  e.  ZZ )
227179, 226zmulcld 10381 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  e.  ZZ )
228178, 227sylan2b 462 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  { x  e.  ( 0 ... J )  |  2  ||  x } )  ->  (
( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) )  e.  ZZ )
229177, 228fsumzcl 12529 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  e.  ZZ )
230170, 229sseldi 3346 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  e.  QQ )
23133adantrr 698 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( J  _C  i )  e.  ZZ )
232181adantrr 698 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( A Xrm 
N ) ^ ( J  -  i )
)  e.  ZZ )
23364adantrr 698 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( A Yrm 
N ) ^ i
)  e.  ZZ )
234 zexpcl 11396 . . . . . . . . . . 11  |-  ( ( ( ( A ^
2 )  -  1 )  e.  ZZ  /\  ( ( i  - 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) )  e.  ZZ )
23512, 111, 234syl2an 464 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) )  e.  ZZ )
236233, 235zmulcld 10381 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) )  e.  ZZ )
237232, 236zmulcld 10381 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) )  e.  ZZ )
238231, 237zmulcld 10381 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  e.  ZZ )
23960, 238sylan2b 462 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x } )  ->  (
( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) ) )  e.  ZZ )
24057, 239fsumzcl 12529 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  e.  ZZ )
241170, 240sseldi 3346 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  e.  QQ )
242 qirropth 26971 . . . 4  |-  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  ( CC 
\  QQ )  /\  ( ( A Xrm  ( N  x.  J ) )  e.  QQ  /\  ( A Yrm  ( N  x.  J
) )  e.  QQ )  /\  ( sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  e.  QQ  /\ 
sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  e.  QQ ) )  ->  (
( ( A Xrm  ( N  x.  J ) )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm  ( N  x.  J
) ) ) )  =  ( sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) )  <-> 
( ( A Xrm  ( N  x.  J ) )  =  sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  /\  ( A Yrm  ( N  x.  J ) )  =  sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) ) )
243161, 169, 173, 230, 241, 242syl122anc 1193 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( ( A Xrm  ( N  x.  J ) )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm  ( N  x.  J
) ) ) )  =  ( sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) )  <-> 
( ( A Xrm  ( N  x.  J ) )  =  sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  /\  ( A Yrm  ( N  x.  J ) )  =  sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) ) )
244159, 243mpbid 202 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( A Xrm  ( N  x.  J ) )  = 
sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  /\  ( A Yrm  ( N  x.  J ) )  =  sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) )
245244simprd 450 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm  ( N  x.  J
) )  =  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   {crab 2709    \ cdif 3317    u. cun 3318    i^i cin 3319    C_ wss 3320   (/)c0 3628   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   Fincfn 7109   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   NNcn 10000   2c2 10049   NN0cn0 10221   ZZcz 10282   ZZ>=cuz 10488   QQcq 10574   ...cfz 11043   ^cexp 11382    _C cbc 11593   sqrcsqr 12038   sum_csu 12479    || cdivides 12852   Primecprime 13079   Xrm crmx 26963   Yrm crmy 26964
This theorem is referenced by:  jm2.23  27067
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-omul 6729  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-acn 7829  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-ef 12670  df-sin 12672  df-cos 12673  df-pi 12675  df-dvds 12853  df-gcd 13007  df-prm 13080  df-numer 13127  df-denom 13128  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754  df-log 20454  df-squarenn 26904  df-pell1qr 26905  df-pell14qr 26906  df-pell1234qr 26907  df-pellfund 26908  df-rmx 26965  df-rmy 26966
  Copyright terms: Public domain W3C validator