Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.22 Unicode version

Theorem jm2.22 27088
Description: Lemma for jm2.20nn 27090. Applying binomial theorem and taking irrational part. (Contributed by Stefan O'Rear, 26-Sep-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
jm2.22  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm  ( N  x.  J
) )  =  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) )
Distinct variable groups:    A, i, x    i, N, x    i, J, x

Proof of Theorem jm2.22
StepHypRef Expression
1 nn0z 10046 . . . . 5  |-  ( J  e.  NN0  ->  J  e.  ZZ )
2 jm2.21 27087 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  ZZ )  ->  (
( A Xrm  ( N  x.  J ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  ( N  x.  J ) ) ) )  =  ( ( ( A Xrm  N )  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ) ^ J
) )
31, 2syl3an3 1217 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( A Xrm  ( N  x.  J ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  ( N  x.  J ) ) ) )  =  ( ( ( A Xrm  N )  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ) ^ J
) )
4 frmx 26998 . . . . . . . 8  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
54fovcl 5949 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
653adant3 975 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Xrm 
N )  e.  NN0 )
76nn0cnd 10020 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Xrm 
N )  e.  CC )
8 eluzelz 10238 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
9 zsqcl 11174 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
10 peano2zm 10062 . . . . . . . . . 10  |-  ( ( A ^ 2 )  e.  ZZ  ->  (
( A ^ 2 )  -  1 )  e.  ZZ )
118, 9, 103syl 18 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  ZZ )
12113ad2ant1 976 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( A ^ 2 )  -  1 )  e.  ZZ )
1312zcnd 10118 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( A ^ 2 )  -  1 )  e.  CC )
1413sqrcld 11919 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  CC )
15 frmy 26999 . . . . . . . . 9  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
1615fovcl 5949 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
17163adant3 975 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm 
N )  e.  ZZ )
1817zcnd 10118 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm 
N )  e.  CC )
1914, 18mulcld 8855 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) )  e.  CC )
20 simp3 957 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  J  e.  NN0 )
21 binom 12288 . . . . 5  |-  ( ( ( A Xrm  N )  e.  CC  /\  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) )  e.  CC  /\  J  e.  NN0 )  -> 
( ( ( A Xrm  N )  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ) ^ J
)  =  sum_ i  e.  ( 0 ... J
) ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) ) )
227, 19, 20, 21syl3anc 1182 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( ( A Xrm  N )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ) ^ J )  = 
sum_ i  e.  ( 0 ... J ) ( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) ) )
23 rabnc 3478 . . . . . . 7  |-  ( { x  e.  ( 0 ... J )  |  2  ||  x }  i^i  { x  e.  ( 0 ... J )  |  -.  2  ||  x } )  =  (/)
2423a1i 10 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( { x  e.  (
0 ... J )  |  2  ||  x }  i^i  { x  e.  ( 0 ... J )  |  -.  2  ||  x } )  =  (/) )
25 rabxm 3477 . . . . . . 7  |-  ( 0 ... J )  =  ( { x  e.  ( 0 ... J
)  |  2  ||  x }  u.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x } )
2625a1i 10 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
0 ... J )  =  ( { x  e.  ( 0 ... J
)  |  2  ||  x }  u.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x } ) )
27 fzfid 11035 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
0 ... J )  e. 
Fin )
28 simpl3 960 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  J  e.  NN0 )
29 elfzelz 10798 . . . . . . . . . 10  |-  ( i  e.  ( 0 ... J )  ->  i  e.  ZZ )
3029adantl 452 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  i  e.  ZZ )
31 bccl 11334 . . . . . . . . . 10  |-  ( ( J  e.  NN0  /\  i  e.  ZZ )  ->  ( J  _C  i
)  e.  NN0 )
3231nn0zd 10115 . . . . . . . . 9  |-  ( ( J  e.  NN0  /\  i  e.  ZZ )  ->  ( J  _C  i
)  e.  ZZ )
3328, 30, 32syl2anc 642 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( J  _C  i )  e.  ZZ )
3433zcnd 10118 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( J  _C  i )  e.  CC )
356nn0zd 10115 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Xrm 
N )  e.  ZZ )
3635adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( A Xrm 
N )  e.  ZZ )
3736zcnd 10118 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( A Xrm 
N )  e.  CC )
38 fznn0sub 10824 . . . . . . . . . 10  |-  ( i  e.  ( 0 ... J )  ->  ( J  -  i )  e.  NN0 )
3938adantl 452 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( J  -  i )  e.  NN0 )
4037, 39expcld 11245 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A Xrm  N ) ^
( J  -  i
) )  e.  CC )
4112adantr 451 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A ^ 2 )  -  1 )  e.  ZZ )
4241zcnd 10118 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A ^ 2 )  -  1 )  e.  CC )
4342sqrcld 11919 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  CC )
4417adantr 451 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( A Yrm 
N )  e.  ZZ )
4544zcnd 10118 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  ( A Yrm 
N )  e.  CC )
4643, 45mulcld 8855 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) )  e.  CC )
47 elfznn0 10822 . . . . . . . . . 10  |-  ( i  e.  ( 0 ... J )  ->  i  e.  NN0 )
4847adantl 452 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  i  e.  NN0 )
4946, 48expcld 11245 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
)  e.  CC )
5040, 49mulcld 8855 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) )  e.  CC )
5134, 50mulcld 8855 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) )  e.  CC )
5224, 26, 27, 51fsumsplit 12212 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  ( 0 ... J
) ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  =  (
sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  +  sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) ) ) )
53 fzfi 11034 . . . . . . . . . 10  |-  ( 0 ... J )  e. 
Fin
54 ssrab2 3258 . . . . . . . . . 10  |-  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  C_  (
0 ... J )
55 ssfi 7083 . . . . . . . . . 10  |-  ( ( ( 0 ... J
)  e.  Fin  /\  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  C_  ( 0 ... J ) )  ->  { x  e.  (
0 ... J )  |  -.  2  ||  x }  e.  Fin )
5653, 54, 55mp2an 653 . . . . . . . . 9  |-  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  e.  Fin
5756a1i 10 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  e.  Fin )
58 breq2 4027 . . . . . . . . . . 11  |-  ( x  =  i  ->  (
2  ||  x  <->  2  ||  i ) )
5958notbid 285 . . . . . . . . . 10  |-  ( x  =  i  ->  ( -.  2  ||  x  <->  -.  2  ||  i ) )
6059elrab 2923 . . . . . . . . 9  |-  ( i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  <->  ( i  e.  ( 0 ... J
)  /\  -.  2  ||  i ) )
6134adantrr 697 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( J  _C  i )  e.  CC )
6240adantrr 697 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( A Xrm 
N ) ^ ( J  -  i )
)  e.  CC )
63 zexpcl 11118 . . . . . . . . . . . . . . 15  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  i  e. 
NN0 )  ->  (
( A Yrm  N ) ^
i )  e.  ZZ )
6417, 47, 63syl2an 463 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A Yrm  N ) ^
i )  e.  ZZ )
6564zcnd 10118 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A Yrm  N ) ^
i )  e.  CC )
6665adantrr 697 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( A Yrm 
N ) ^ i
)  e.  CC )
6742adantrr 697 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( A ^ 2 )  - 
1 )  e.  CC )
6829adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  i  e.  ZZ )
69 simpr 447 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  -.  2  ||  i )
70 1z 10053 . . . . . . . . . . . . . . . . . 18  |-  1  e.  ZZ
7170a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  1  e.  ZZ )
72 2prm 12774 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  Prime
73 nprmdvds1 12790 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  e.  Prime  ->  -.  2  ||  1 )
7472, 73ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  -.  2  ||  1
7574a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  -.  2  ||  1 )
76 omoe 12865 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  ZZ  /\ 
-.  2  ||  i
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  (
i  -  1 ) )
7768, 69, 71, 75, 76syl22anc 1183 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  2  ||  (
i  -  1 ) )
78 2z 10054 . . . . . . . . . . . . . . . . . 18  |-  2  e.  ZZ
7978a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  2  e.  ZZ )
80 2ne0 9829 . . . . . . . . . . . . . . . . . 18  |-  2  =/=  0
8180a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  2  =/=  0
)
82 peano2zm 10062 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ZZ  ->  (
i  -  1 )  e.  ZZ )
8329, 82syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  ( 0 ... J )  ->  (
i  -  1 )  e.  ZZ )
8483adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( i  - 
1 )  e.  ZZ )
85 dvdsval2 12534 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  (
i  -  1 )  e.  ZZ )  -> 
( 2  ||  (
i  -  1 )  <-> 
( ( i  - 
1 )  /  2
)  e.  ZZ ) )
8679, 81, 84, 85syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( 2  ||  ( i  -  1 )  <->  ( ( i  -  1 )  / 
2 )  e.  ZZ ) )
8777, 86mpbid 201 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( ( i  -  1 )  / 
2 )  e.  ZZ )
8883zred 10117 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ( 0 ... J )  ->  (
i  -  1 )  e.  RR )
8988adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( i  - 
1 )  e.  RR )
90 dvds0 12544 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  e.  ZZ  ->  2  ||  0 )
9178, 90ax-mp 8 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  ||  0
92 breq2 4027 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  =  0  ->  (
2  ||  i  <->  2  ||  0 ) )
9391, 92mpbiri 224 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  =  0  ->  2  ||  i )
9493con3i 127 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  2  ||  i  ->  -.  i  =  0
)
9594adantl 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  -.  i  = 
0 )
9647adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  i  e.  NN0 )
97 elnn0 9967 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  NN0  <->  ( i  e.  NN  \/  i  =  0 ) )
9896, 97sylib 188 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( i  e.  NN  \/  i  =  0 ) )
99 orel2 372 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  i  =  0  -> 
( ( i  e.  NN  \/  i  =  0 )  ->  i  e.  NN ) )
10095, 98, 99sylc 56 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  i  e.  NN )
101 nnm1nn0 10005 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  NN  ->  (
i  -  1 )  e.  NN0 )
102100, 101syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( i  - 
1 )  e.  NN0 )
103102nn0ge0d 10021 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  0  <_  (
i  -  1 ) )
104 2re 9815 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR
105104a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  2  e.  RR )
106 2pos 9828 . . . . . . . . . . . . . . . . 17  |-  0  <  2
107106a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  0  <  2
)
108 divge0 9625 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( i  - 
1 )  e.  RR  /\  0  <_  ( i  -  1 ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <_  ( (
i  -  1 )  /  2 ) )
10989, 103, 105, 107, 108syl22anc 1183 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  0  <_  (
( i  -  1 )  /  2 ) )
110 elnn0z 10036 . . . . . . . . . . . . . . 15  |-  ( ( ( i  -  1 )  /  2 )  e.  NN0  <->  ( ( ( i  -  1 )  /  2 )  e.  ZZ  /\  0  <_ 
( ( i  - 
1 )  /  2
) ) )
11187, 109, 110sylanbrc 645 . . . . . . . . . . . . . 14  |-  ( ( i  e.  ( 0 ... J )  /\  -.  2  ||  i )  ->  ( ( i  -  1 )  / 
2 )  e.  NN0 )
112111adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
i  -  1 )  /  2 )  e. 
NN0 )
11367, 112expcld 11245 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) )  e.  CC )
11466, 113mulcld 8855 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) )  e.  CC )
11562, 114mulcld 8855 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) )  e.  CC )
11661, 115mulcld 8855 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  e.  CC )
11760, 116sylan2b 461 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x } )  ->  (
( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) ) )  e.  CC )
11857, 14, 117fsummulc2 12246 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) )  = 
sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  (
( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) ) ) ) )
11943adantrr 697 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  CC )
120119, 61, 115mul12d 9021 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) ) ) )  =  ( ( J  _C  i
)  x.  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) ) )
121119, 62, 114mul12d 9021 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) )
12243, 48expcld 11245 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i )  e.  CC )
123122adantrr 697 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) ) ^
i )  e.  CC )
12466, 123mulcomd 8856 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Yrm  N ) ^
i )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i ) )  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i )  x.  ( ( A Yrm  N ) ^ i ) ) )
125119, 66, 113mul12d 9021 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) )  =  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) ) )
126 2nn0 9982 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  NN0
127126a1i 10 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  2  e.  NN0 )
128119, 112, 127expmuld 11248 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) ) ^
( 2  x.  (
( i  -  1 )  /  2 ) ) )  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ 2 ) ^ ( ( i  -  1 )  / 
2 ) ) )
12983zcnd 10118 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  e.  ( 0 ... J )  ->  (
i  -  1 )  e.  CC )
130129ad2antrl 708 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( i  -  1 )  e.  CC )
131 2cn 9816 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  CC
132131a1i 10 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  2  e.  CC )
13380a1i 10 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  2  =/=  0 )
134130, 132, 133divcan2d 9538 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( 2  x.  ( ( i  -  1 )  / 
2 ) )  =  ( i  -  1 ) )
135134oveq2d 5874 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) ) ^
( 2  x.  (
( i  -  1 )  /  2 ) ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ ( i  -  1 ) ) )
13667sqsqrd 11921 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) ) ^
2 )  =  ( ( A ^ 2 )  -  1 ) )
137136oveq1d 5873 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( sqr `  (
( A ^ 2 )  -  1 ) ) ^ 2 ) ^ ( ( i  -  1 )  / 
2 ) )  =  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) )
138128, 135, 1373eqtr3rd 2324 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ ( i  -  1 ) ) )
139138oveq1d 5873 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) )  x.  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ ( i  -  1 ) )  x.  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )
140119, 113mulcomd 8856 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) )  =  ( ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) )  x.  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
141100adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  i  e.  NN )
142 expm1t 11130 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  CC  /\  i  e.  NN )  ->  ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i )  =  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ ( i  - 
1 ) )  x.  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )
143119, 141, 142syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) ) ^
i )  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ ( i  -  1 ) )  x.  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )
144139, 140, 1433eqtr4d 2325 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i ) )
145144oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Yrm  N ) ^
i )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) )  =  ( ( ( A Yrm  N ) ^
i )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i ) ) )
146125, 145eqtrd 2315 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) )  =  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ i ) ) )
14743, 45, 48mulexpd 11260 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
)  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i )  x.  ( ( A Yrm  N ) ^ i ) ) )
148147adantrr 697 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
)  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ i )  x.  ( ( A Yrm  N ) ^ i ) ) )
149124, 146, 1483eqtr4d 2325 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) )  =  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) )
150149oveq2d 5874 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Xrm  N ) ^
( J  -  i
) )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )
151121, 150eqtrd 2315 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )
152151oveq2d 5874 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( J  _C  i )  x.  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) ) ) )  =  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) ) )
153120, 152eqtrd 2315 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) ) ) )  =  ( ( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) ) )
15460, 153sylan2b 461 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x } )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) )  =  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) ) )
155154sumeq2dv 12176 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  ( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( i  - 
1 )  /  2
) ) ) ) ) )  =  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) ) )
156118, 155eqtr2d 2316 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) )
157156oveq2d 5874 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( sum_ i  e.  { x  e.  ( 0 ... J
)  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  +  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) ) )  =  ( sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) ) )
15852, 157eqtrd 2315 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  ( 0 ... J
) ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  =  (
sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) ) ) )
1593, 22, 1583eqtrd 2319 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( A Xrm  ( N  x.  J ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  ( N  x.  J ) ) ) )  =  ( sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) ) ) )
160 rmspecsqrnq 26991 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  ( CC  \  QQ ) )
1611603ad2ant1 976 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  ( CC  \  QQ ) )
162 nn0ssq 10324 . . . . 5  |-  NN0  C_  QQ
163 simp1 955 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  A  e.  ( ZZ>= `  2 )
)
164 simp2 956 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  N  e.  ZZ )
16513ad2ant3 978 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  J  e.  ZZ )
166164, 165zmulcld 10123 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( N  x.  J )  e.  ZZ )
1674fovcl 5949 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  x.  J )  e.  ZZ )  ->  ( A Xrm  ( N  x.  J
) )  e.  NN0 )
168163, 166, 167syl2anc 642 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Xrm  ( N  x.  J
) )  e.  NN0 )
169162, 168sseldi 3178 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Xrm  ( N  x.  J
) )  e.  QQ )
170 zssq 10323 . . . . 5  |-  ZZ  C_  QQ
17115fovcl 5949 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  x.  J )  e.  ZZ )  ->  ( A Yrm  ( N  x.  J
) )  e.  ZZ )
172163, 166, 171syl2anc 642 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm  ( N  x.  J
) )  e.  ZZ )
173170, 172sseldi 3178 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm  ( N  x.  J
) )  e.  QQ )
174 ssrab2 3258 . . . . . . . 8  |-  { x  e.  ( 0 ... J
)  |  2  ||  x }  C_  ( 0 ... J )
175 ssfi 7083 . . . . . . . 8  |-  ( ( ( 0 ... J
)  e.  Fin  /\  { x  e.  ( 0 ... J )  |  2  ||  x }  C_  ( 0 ... J
) )  ->  { x  e.  ( 0 ... J
)  |  2  ||  x }  e.  Fin )
17653, 174, 175mp2an 653 . . . . . . 7  |-  { x  e.  ( 0 ... J
)  |  2  ||  x }  e.  Fin
177176a1i 10 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  { x  e.  ( 0 ... J
)  |  2  ||  x }  e.  Fin )
17858elrab 2923 . . . . . . 7  |-  ( i  e.  { x  e.  ( 0 ... J
)  |  2  ||  x }  <->  ( i  e.  ( 0 ... J
)  /\  2  ||  i ) )
17933adantrr 697 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( J  _C  i )  e.  ZZ )
180 zexpcl 11118 . . . . . . . . . . 11  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( J  -  i )  e. 
NN0 )  ->  (
( A Xrm  N ) ^
( J  -  i
) )  e.  ZZ )
18136, 39, 180syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
( A Xrm  N ) ^
( J  -  i
) )  e.  ZZ )
182181adantrr 697 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( A Xrm  N ) ^ ( J  -  i ) )  e.  ZZ )
18343adantrr 697 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  CC )
18445adantrr 697 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( A Yrm  N )  e.  CC )
18547ad2antrl 708 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  i  e.  NN0 )
186183, 184, 185mulexpd 11260 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i )  =  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ i )  x.  ( ( A Yrm  N ) ^ i ) ) )
18729zcnd 10118 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  ( 0 ... J )  ->  i  e.  CC )
188187adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  i  e.  CC )
189131a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  2  e.  CC )
19080a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  2  =/=  0 )
191188, 189, 190divcan2d 9538 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  (
2  x.  ( i  /  2 ) )  =  i )
192191eqcomd 2288 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  ( 0 ... J
) )  ->  i  =  ( 2  x.  ( i  /  2
) ) )
193192adantrr 697 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  i  =  ( 2  x.  ( i  /  2 ) ) )
194193oveq2d 5874 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^
2 )  -  1 ) ) ^ i
)  =  ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ ( 2  x.  ( i  /  2
) ) ) )
19578a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN0  ->  2  e.  ZZ )
19680a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN0  ->  2  =/=  0 )
197 nn0z 10046 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN0  ->  i  e.  ZZ )
198 dvdsval2 12534 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  i  e.  ZZ )  ->  (
2  ||  i  <->  ( i  /  2 )  e.  ZZ ) )
199195, 196, 197, 198syl3anc 1182 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  NN0  ->  ( 2 
||  i  <->  ( i  /  2 )  e.  ZZ ) )
200199biimpa 470 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
( i  /  2
)  e.  ZZ )
201 nn0re 9974 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN0  ->  i  e.  RR )
202201adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
i  e.  RR )
203 nn0ge0 9991 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN0  ->  0  <_ 
i )
204203adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
0  <_  i )
205104a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
2  e.  RR )
206106a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
0  <  2 )
207 divge0 9625 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( i  e.  RR  /\  0  <_  i )  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  0  <_  ( i  /  2 ) )
208202, 204, 205, 206, 207syl22anc 1183 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
0  <_  ( i  /  2 ) )
209 elnn0z 10036 . . . . . . . . . . . . . . . . 17  |-  ( ( i  /  2 )  e.  NN0  <->  ( ( i  /  2 )  e.  ZZ  /\  0  <_ 
( i  /  2
) ) )
210200, 208, 209sylanbrc 645 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  NN0  /\  2  ||  i )  -> 
( i  /  2
)  e.  NN0 )
21147, 210sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  ( 0 ... J )  /\  2  ||  i )  -> 
( i  /  2
)  e.  NN0 )
212211adantl 452 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( i  / 
2 )  e.  NN0 )
213126a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  2  e.  NN0 )
214183, 212, 213expmuld 11248 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^
2 )  -  1 ) ) ^ (
2  x.  ( i  /  2 ) ) )  =  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) ) ^ 2 ) ^ ( i  / 
2 ) ) )
21542adantrr 697 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( A ^ 2 )  - 
1 )  e.  CC )
216215sqsqrd 11921 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^
2 )  -  1 ) ) ^ 2 )  =  ( ( A ^ 2 )  -  1 ) )
217216oveq1d 5873 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ 2 ) ^
( i  /  2
) )  =  ( ( ( A ^
2 )  -  1 ) ^ ( i  /  2 ) ) )
218194, 214, 2173eqtrd 2319 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( sqr `  ( ( A ^
2 )  -  1 ) ) ^ i
)  =  ( ( ( A ^ 2 )  -  1 ) ^ ( i  / 
2 ) ) )
219218oveq1d 5873 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) ) ^ i )  x.  ( ( A Yrm  N ) ^ i ) )  =  ( ( ( ( A ^ 2 )  -  1 ) ^ ( i  / 
2 ) )  x.  ( ( A Yrm  N ) ^ i ) ) )
220186, 219eqtrd 2315 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i )  =  ( ( ( ( A ^ 2 )  -  1 ) ^ ( i  / 
2 ) )  x.  ( ( A Yrm  N ) ^ i ) ) )
221 zexpcl 11118 . . . . . . . . . . . 12  |-  ( ( ( ( A ^
2 )  -  1 )  e.  ZZ  /\  ( i  /  2
)  e.  NN0 )  ->  ( ( ( A ^ 2 )  - 
1 ) ^ (
i  /  2 ) )  e.  ZZ )
22212, 211, 221syl2an 463 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( A ^ 2 )  -  1 ) ^
( i  /  2
) )  e.  ZZ )
22364adantrr 697 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( A Yrm  N ) ^ i )  e.  ZZ )
224222, 223zmulcld 10123 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( ( A ^ 2 )  -  1 ) ^ ( i  / 
2 ) )  x.  ( ( A Yrm  N ) ^ i ) )  e.  ZZ )
225220, 224eqeltrd 2357 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i )  e.  ZZ )
226182, 225zmulcld 10123 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) )  e.  ZZ )
227179, 226zmulcld 10123 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  2  ||  i ) )  ->  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  e.  ZZ )
228178, 227sylan2b 461 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  { x  e.  ( 0 ... J )  |  2  ||  x } )  ->  (
( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i
) ) )  e.  ZZ )
229177, 228fsumzcl 12208 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  e.  ZZ )
230170, 229sseldi 3178 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  e.  QQ )
23133adantrr 697 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( J  _C  i )  e.  ZZ )
232181adantrr 697 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( A Xrm 
N ) ^ ( J  -  i )
)  e.  ZZ )
23364adantrr 697 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( A Yrm 
N ) ^ i
)  e.  ZZ )
234 zexpcl 11118 . . . . . . . . . . 11  |-  ( ( ( ( A ^
2 )  -  1 )  e.  ZZ  /\  ( ( i  - 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) )  e.  ZZ )
23512, 111, 234syl2an 463 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) )  e.  ZZ )
236233, 235zmulcld 10123 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) )  e.  ZZ )
237232, 236zmulcld 10123 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( (
( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) )  e.  ZZ )
238231, 237zmulcld 10123 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  (
i  e.  ( 0 ... J )  /\  -.  2  ||  i ) )  ->  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  e.  ZZ )
23960, 238sylan2b 461 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN0 )  /\  i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x } )  ->  (
( J  _C  i
)  x.  ( ( ( A Xrm  N ) ^
( J  -  i
) )  x.  (
( ( A Yrm  N ) ^ i )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( i  -  1 )  /  2 ) ) ) ) )  e.  ZZ )
24057, 239fsumzcl 12208 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  e.  ZZ )
241170, 240sseldi 3178 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  e.  QQ )
242 qirropth 26993 . . . 4  |-  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  ( CC 
\  QQ )  /\  ( ( A Xrm  ( N  x.  J ) )  e.  QQ  /\  ( A Yrm  ( N  x.  J
) )  e.  QQ )  /\  ( sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  e.  QQ  /\ 
sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) )  e.  QQ ) )  ->  (
( ( A Xrm  ( N  x.  J ) )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm  ( N  x.  J
) ) ) )  =  ( sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) )  <-> 
( ( A Xrm  ( N  x.  J ) )  =  sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  /\  ( A Yrm  ( N  x.  J ) )  =  sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) ) )
243161, 169, 173, 230, 241, 242syl122anc 1191 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( ( A Xrm  ( N  x.  J ) )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm  ( N  x.  J
) ) ) )  =  ( sum_ i  e.  { x  e.  ( 0 ... J )  |  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ^ i ) ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  sum_ i  e.  { x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) )  <-> 
( ( A Xrm  ( N  x.  J ) )  =  sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  /\  ( A Yrm  ( N  x.  J ) )  =  sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) ) )
244159, 243mpbid 201 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  (
( A Xrm  ( N  x.  J ) )  = 
sum_ i  e.  {
x  e.  ( 0 ... J )  |  2  ||  x } 
( ( J  _C  i )  x.  (
( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) ^
i ) ) )  /\  ( A Yrm  ( N  x.  J ) )  =  sum_ i  e.  {
x  e.  ( 0 ... J )  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i ) )  x.  ( ( ( A Yrm  N ) ^ i
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( i  -  1 )  / 
2 ) ) ) ) ) ) )
245244simprd 449 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm  ( N  x.  J
) )  =  sum_ i  e.  { x  e.  ( 0 ... J
)  |  -.  2  ||  x }  ( ( J  _C  i )  x.  ( ( ( A Xrm  N ) ^ ( J  -  i )
)  x.  ( ( ( A Yrm  N ) ^
i )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( i  -  1 )  /  2 ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   {crab 2547    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Fincfn 6863   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   QQcq 10316   ...cfz 10782   ^cexp 11104    _C cbc 11315   sqrcsqr 11718   sum_csu 12158    || cdivides 12531   Primecprime 12758   Xrm crmx 26985   Yrm crmy 26986
This theorem is referenced by:  jm2.23  27089
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-dvds 12532  df-gcd 12686  df-prm 12759  df-numer 12806  df-denom 12807  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914  df-squarenn 26926  df-pell1qr 26927  df-pell14qr 26928  df-pell1234qr 26929  df-pellfund 26930  df-rmx 26987  df-rmy 26988
  Copyright terms: Public domain W3C validator