Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.26lem3 Unicode version

Theorem jm2.26lem3 27094
Description: Lemma for jm2.26 27095. Use acongrep 27067 to find K', M' ~ K, M in [ 0,N ]. thus Y(K') ~ Y(M') and both are small; K' = M' on pain of contradicting 2.24, so K ~ M (Contributed by Stefan O'Rear, 3-Oct-2014.)
Assertion
Ref Expression
jm2.26lem3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  /\  ( ( A Xrm  N )  ||  (
( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) ) )  ->  K  =  M )

Proof of Theorem jm2.26lem3
StepHypRef Expression
1 simplll 734 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  A  e.  ( ZZ>= ` 
2 ) )
2 elfzelz 10798 . . . . . . . . . . . 12  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
32adantr 451 . . . . . . . . . . 11  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  K  e.  ZZ )
43ad2antlr 707 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  e.  ZZ )
5 rmyabs 27045 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ )  ->  ( abs `  ( A Yrm  K ) )  =  ( A Yrm  ( abs `  K ) ) )
61, 4, 5syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  ( A Yrm 
K ) )  =  ( A Yrm  ( abs `  K
) ) )
73zred 10117 . . . . . . . . . . . 12  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  K  e.  RR )
87ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  e.  RR )
9 elfzle1 10799 . . . . . . . . . . . . 13  |-  ( K  e.  ( 0 ... N )  ->  0  <_  K )
109adantr 451 . . . . . . . . . . . 12  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  0  <_  K
)
1110ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
0  <_  K )
128, 11absidd 11905 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  K
)  =  K )
1312oveq2d 5874 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  ( abs `  K
) )  =  ( A Yrm  K ) )
146, 13eqtrd 2315 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  ( A Yrm 
K ) )  =  ( A Yrm  K ) )
15 elfzelz 10798 . . . . . . . . . . . 12  |-  ( M  e.  ( 0 ... N )  ->  M  e.  ZZ )
1615adantl 452 . . . . . . . . . . 11  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  M  e.  ZZ )
1716ad2antlr 707 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  M  e.  ZZ )
18 rmyabs 27045 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( abs `  ( A Yrm  M ) )  =  ( A Yrm  ( abs `  M ) ) )
191, 17, 18syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  ( A Yrm 
M ) )  =  ( A Yrm  ( abs `  M
) ) )
2016zred 10117 . . . . . . . . . . . 12  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  M  e.  RR )
2120ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  M  e.  RR )
22 elfzle1 10799 . . . . . . . . . . . . 13  |-  ( M  e.  ( 0 ... N )  ->  0  <_  M )
2322adantl 452 . . . . . . . . . . . 12  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  0  <_  M
)
2423ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
0  <_  M )
2521, 24absidd 11905 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  M
)  =  M )
2625oveq2d 5874 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  ( abs `  M
) )  =  ( A Yrm  M ) )
2719, 26eqtrd 2315 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( abs `  ( A Yrm 
M ) )  =  ( A Yrm  M ) )
2814, 27oveq12d 5876 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  =  ( ( A Yrm  K )  +  ( A Yrm  M ) ) )
29 frmy 26999 . . . . . . . . . . . 12  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
3029fovcl 5949 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ )  ->  ( A Yrm 
K )  e.  ZZ )
311, 4, 30syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  e.  ZZ )
3231zred 10117 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  e.  RR )
3329fovcl 5949 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
341, 17, 33syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  M )  e.  ZZ )
3534zred 10117 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  M )  e.  RR )
3632, 35readdcld 8862 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  K )  +  ( A Yrm  M ) )  e.  RR )
37 simpllr 735 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  N  e.  NN )
3837nnzd 10116 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  N  e.  ZZ )
39 peano2zm 10062 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
4038, 39syl 15 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( N  -  1 )  e.  ZZ )
4129fovcl 5949 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  -  1 )  e.  ZZ )  -> 
( A Yrm  ( N  - 
1 ) )  e.  ZZ )
421, 40, 41syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  ( N  - 
1 ) )  e.  ZZ )
4342zred 10117 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  ( N  - 
1 ) )  e.  RR )
4429fovcl 5949 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
451, 38, 44syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  N )  e.  ZZ )
4645zred 10117 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  N )  e.  RR )
4743, 46readdcld 8862 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) )  e.  RR )
48 frmx 26998 . . . . . . . . . . 11  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
4948fovcl 5949 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
501, 38, 49syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Xrm  N )  e. 
NN0 )
5150nn0red 10019 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Xrm  N )  e.  RR )
52 elfzle2 10800 . . . . . . . . . . . 12  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  K  <_  ( N  -  1 ) )
5352adantl 452 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  K  <_  ( N  -  1 ) )
54 lermy 27042 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  ->  ( K  <_  ( N  - 
1 )  <->  ( A Yrm  K
)  <_  ( A Yrm  ( N  -  1 ) ) ) )
551, 4, 40, 54syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( K  <_  ( N  -  1 )  <-> 
( A Yrm  K )  <_ 
( A Yrm  ( N  - 
1 ) ) ) )
5655adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( K  <_  ( N  - 
1 )  <->  ( A Yrm  K
)  <_  ( A Yrm  ( N  -  1 ) ) ) )
5753, 56mpbid 201 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A Yrm 
K )  <_  ( A Yrm  ( N  -  1 ) ) )
58 simplrr 737 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  M  e.  ( 0 ... N ) )
59 elfzle2 10800 . . . . . . . . . . . . 13  |-  ( M  e.  ( 0 ... N )  ->  M  <_  N )
6058, 59syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  M  <_  N )
61 lermy 27042 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  ( A Yrm  M
)  <_  ( A Yrm  N
) ) )
621, 17, 38, 61syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( M  <_  N  <->  ( A Yrm  M )  <_  ( A Yrm 
N ) ) )
6360, 62mpbid 201 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  M )  <_ 
( A Yrm  N ) )
6463adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A Yrm 
M )  <_  ( A Yrm 
N ) )
65 le2add 9256 . . . . . . . . . . . 12  |-  ( ( ( ( A Yrm  K )  e.  RR  /\  ( A Yrm 
M )  e.  RR )  /\  ( ( A Yrm  ( N  -  1 ) )  e.  RR  /\  ( A Yrm  N )  e.  RR ) )  -> 
( ( ( A Yrm  K )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  M )  <_  ( A Yrm  N
) )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
6632, 35, 43, 46, 65syl22anc 1183 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( ( A Yrm  K )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  M )  <_  ( A Yrm  N
) )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
6766adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( A Yrm  K )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  M )  <_  ( A Yrm  N ) )  ->  ( ( A Yrm 
K )  +  ( A Yrm  M ) )  <_ 
( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
6857, 64, 67mp2and 660 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) )
6931zcnd 10118 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  e.  CC )
7034zcnd 10118 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  M )  e.  CC )
7169, 70addcomd 9014 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  K )  +  ( A Yrm  M ) )  =  ( ( A Yrm  M )  +  ( A Yrm  K ) ) )
7271adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  =  ( ( A Yrm  M )  +  ( A Yrm  K ) ) )
73 id 19 . . . . . . . . . . . . . . . . . . 19  |-  ( K  =/=  M  ->  K  =/=  M )
7473necomd 2529 . . . . . . . . . . . . . . . . . 18  |-  ( K  =/=  M  ->  M  =/=  K )
7574adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( K  =/=  M  /\  K  =  N )  ->  M  =/=  K )
76 simpr 447 . . . . . . . . . . . . . . . . 17  |-  ( ( K  =/=  M  /\  K  =  N )  ->  K  =  N )
7775, 76neeqtrd 2468 . . . . . . . . . . . . . . . 16  |-  ( ( K  =/=  M  /\  K  =  N )  ->  M  =/=  N )
7877neneqd 2462 . . . . . . . . . . . . . . 15  |-  ( ( K  =/=  M  /\  K  =  N )  ->  -.  M  =  N )
7978adantll 694 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  -.  M  =  N )
80 nnnn0 9972 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  N  e.  NN0 )
81 nn0uz 10262 . . . . . . . . . . . . . . . . . 18  |-  NN0  =  ( ZZ>= `  0 )
8280, 81syl6eleq 2373 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  0 )
)
8382adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  N  e.  ( ZZ>= `  0 )
)
8483ad3antrrr 710 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  N  e.  ( ZZ>= `  0 )
)
85 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  M  e.  ( 0 ... N
) )
8685ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  M  e.  ( 0 ... N
) )
87 fzm1 10862 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( M  e.  ( 0 ... N
)  <->  ( M  e.  ( 0 ... ( N  -  1 ) )  \/  M  =  N ) ) )
8887biimpa 470 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( ZZ>= ` 
0 )  /\  M  e.  ( 0 ... N
) )  ->  ( M  e.  ( 0 ... ( N  - 
1 ) )  \/  M  =  N ) )
8984, 86, 88syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  ( M  e.  ( 0 ... ( N  - 
1 ) )  \/  M  =  N ) )
90 orel2 372 . . . . . . . . . . . . . 14  |-  ( -.  M  =  N  -> 
( ( M  e.  ( 0 ... ( N  -  1 ) )  \/  M  =  N )  ->  M  e.  ( 0 ... ( N  -  1 ) ) ) )
9179, 89, 90sylc 56 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  M  e.  ( 0 ... ( N  -  1 ) ) )
92 elfzle2 10800 . . . . . . . . . . . . 13  |-  ( M  e.  ( 0 ... ( N  -  1 ) )  ->  M  <_  ( N  -  1 ) )
9391, 92syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  M  <_  ( N  -  1 ) )
94 lermy 27042 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  ->  ( M  <_  ( N  - 
1 )  <->  ( A Yrm  M
)  <_  ( A Yrm  ( N  -  1 ) ) ) )
951, 17, 40, 94syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( M  <_  ( N  -  1 )  <-> 
( A Yrm  M )  <_ 
( A Yrm  ( N  - 
1 ) ) ) )
9695adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  ( M  <_  ( N  - 
1 )  <->  ( A Yrm  M
)  <_  ( A Yrm  ( N  -  1 ) ) ) )
9793, 96mpbid 201 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  ( A Yrm 
M )  <_  ( A Yrm  ( N  -  1 ) ) )
98 simplrl 736 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  e.  ( 0 ... N ) )
99 elfzle2 10800 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 0 ... N )  ->  K  <_  N )
10098, 99syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  <_  N )
101 lermy 27042 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <_  N  <->  ( A Yrm  K
)  <_  ( A Yrm  N
) ) )
1021, 4, 38, 101syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( K  <_  N  <->  ( A Yrm  K )  <_  ( A Yrm 
N ) ) )
103100, 102mpbid 201 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  <_ 
( A Yrm  N ) )
104103adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  ( A Yrm 
K )  <_  ( A Yrm 
N ) )
105 le2add 9256 . . . . . . . . . . . . 13  |-  ( ( ( ( A Yrm  M )  e.  RR  /\  ( A Yrm 
K )  e.  RR )  /\  ( ( A Yrm  ( N  -  1 ) )  e.  RR  /\  ( A Yrm  N )  e.  RR ) )  -> 
( ( ( A Yrm  M )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  K )  <_  ( A Yrm  N
) )  ->  (
( A Yrm  M )  +  ( A Yrm  K ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
10635, 32, 43, 46, 105syl22anc 1183 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( ( A Yrm  M )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  K )  <_  ( A Yrm  N
) )  ->  (
( A Yrm  M )  +  ( A Yrm  K ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
107106adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  (
( ( A Yrm  M )  <_  ( A Yrm  ( N  -  1 ) )  /\  ( A Yrm  K )  <_  ( A Yrm  N ) )  ->  ( ( A Yrm 
M )  +  ( A Yrm  K ) )  <_ 
( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) ) )
10897, 104, 107mp2and 660 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  (
( A Yrm  M )  +  ( A Yrm  K ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) )
10972, 108eqbrtrd 4043 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  =/= 
M )  /\  K  =  N )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) )
11037nnnn0d 10018 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  N  e.  NN0 )
111110, 81syl6eleq 2373 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  N  e.  ( ZZ>= ` 
0 ) )
112 fzm1 10862 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( K  e.  ( 0 ... N
)  <->  ( K  e.  ( 0 ... ( N  -  1 ) )  \/  K  =  N ) ) )
113112biimpa 470 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
0 )  /\  K  e.  ( 0 ... N
) )  ->  ( K  e.  ( 0 ... ( N  - 
1 ) )  \/  K  =  N ) )
114111, 98, 113syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( K  e.  ( 0 ... ( N  -  1 ) )  \/  K  =  N ) )
11568, 109, 114mpjaodan 761 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  K )  +  ( A Yrm  M ) )  <_  ( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) ) )
116 jm2.24 27050 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  (
( A Yrm  ( N  - 
1 ) )  +  ( A Yrm  N ) )  <  ( A Xrm  N ) )
1171, 38, 116syl2anc 642 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  ( N  -  1 ) )  +  ( A Yrm  N ) )  <  ( A Xrm  N ) )
11836, 47, 51, 115, 117lelttrd 8974 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( A Yrm  K )  +  ( A Yrm  M ) )  <  ( A Xrm  N ) )
11928, 118eqbrtrd 4043 . . . . . 6  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N ) )
120 simpr 447 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  =/=  M )
121 rmyeq 27041 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  =  M  <->  ( A Yrm  K
)  =  ( A Yrm  M ) ) )
122121necon3bid 2481 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  =/=  M  <->  ( A Yrm  K
)  =/=  ( A Yrm  M ) ) )
1231, 4, 17, 122syl3anc 1182 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( K  =/=  M  <->  ( A Yrm  K )  =/=  ( A Yrm 
M ) ) )
124120, 123mpbid 201 . . . . . 6  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  =/=  ( A Yrm  M ) )
1257ad2antlr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  K  e.  RR )
126 0re 8838 . . . . . . . . . . . . . 14  |-  0  e.  RR
127126a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  0  e.  RR )
128 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  K  =  -u M )
12922ad2antll 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  0  <_  M )
13020adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  M  e.  RR )
131130le0neg2d 9345 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  (
0  <_  M  <->  -u M  <_ 
0 ) )
132129, 131mpbid 201 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  -u M  <_  0 )
133132adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  -u M  <_  0
)
134128, 133eqbrtrd 4043 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  K  <_  0
)
13510ad2antlr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  0  <_  K
)
136 letri3 8907 . . . . . . . . . . . . . 14  |-  ( ( K  e.  RR  /\  0  e.  RR )  ->  ( K  =  0  <-> 
( K  <_  0  /\  0  <_  K ) ) )
137136biimpar 471 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  RR  /\  0  e.  RR )  /\  ( K  <_ 
0  /\  0  <_  K ) )  ->  K  =  0 )
138125, 127, 134, 135, 137syl22anc 1183 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  K  =  0 )
139 simpr 447 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  K  =  0 )
140 simplr 731 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  K  =  -u M )
141140, 139eqtr3d 2317 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  -u M  =  0 )
142130recnd 8861 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  M  e.  CC )
143142ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  M  e.  CC )
144143negeq0d 9149 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  ( M  =  0  <->  -u M  =  0 ) )
145141, 144mpbird 223 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  M  =  0 )
146139, 145eqtr4d 2318 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ( ZZ>= `  2
)  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  /\  K  = 
-u M )  /\  K  =  0 )  ->  K  =  M )
147138, 146mpdan 649 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =  -u M )  ->  K  =  M )
148147ex 423 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  ( K  =  -u M  ->  K  =  M )
)
149148necon3d 2484 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  ( K  =/=  M  ->  K  =/=  -u M ) )
150149imp 418 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  K  =/=  -u M )
15158, 15syl 15 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  M  e.  ZZ )
152151znegcld 10119 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  ->  -u M  e.  ZZ )
153 rmyeq 27041 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  -u M  e.  ZZ )  ->  ( K  =  -u M  <->  ( A Yrm  K
)  =  ( A Yrm  -u M ) ) )
154153necon3bid 2481 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ZZ  /\  -u M  e.  ZZ )  ->  ( K  =/=  -u M  <->  ( A Yrm  K
)  =/=  ( A Yrm  -u M ) ) )
1551, 4, 152, 154syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( K  =/=  -u M  <->  ( A Yrm  K )  =/=  ( A Yrm  -u M ) ) )
156150, 155mpbid 201 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  =/=  ( A Yrm  -u M ) )
157 rmyneg 27013 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( A Yrm  -u M )  =  -u ( A Yrm  M ) )
1581, 17, 157syl2anc 642 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  -u M )  = 
-u ( A Yrm  M ) )
159156, 158neeqtrd 2468 . . . . . 6  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( A Yrm  K )  =/=  -u ( A Yrm  M ) )
160119, 124, 1593jca 1132 . . . . 5  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  K  =/=  M )  -> 
( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )
161160ex 423 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  ( K  =/=  M  ->  (
( ( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) ) )
162 simplll 734 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  A  e.  ( ZZ>= `  2 )
)
1633ad2antlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  K  e.  ZZ )
164162, 163, 30syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
K )  e.  ZZ )
165164zcnd 10118 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
K )  e.  CC )
16616ad2antlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  M  e.  ZZ )
167162, 166, 33syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
M )  e.  ZZ )
168167zcnd 10118 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
M )  e.  CC )
169165, 168negsubd 9163 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  + 
-u ( A Yrm  M ) )  =  ( ( A Yrm  K )  -  ( A Yrm 
M ) ) )
170169fveq2d 5529 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  -u ( A Yrm 
M ) ) )  =  ( abs `  (
( A Yrm  K )  -  ( A Yrm  M ) ) ) )
171168negcld 9144 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -u ( A Yrm 
M )  e.  CC )
172165, 171addcld 8854 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  + 
-u ( A Yrm  M ) )  e.  CC )
173172abscld 11918 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  -u ( A Yrm 
M ) ) )  e.  RR )
174165abscld 11918 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( A Yrm  K ) )  e.  RR )
175168abscld 11918 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( A Yrm  M ) )  e.  RR )
176174, 175readdcld 8862 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  e.  RR )
177 nnz 10045 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  e.  ZZ )
178177adantl 452 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  ->  N  e.  ZZ )
179178ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  N  e.  ZZ )
18049nn0zd 10115 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  ZZ )
181162, 179, 180syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Xrm 
N )  e.  ZZ )
182181zred 10117 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Xrm 
N )  e.  RR )
183165, 171abstrid 11938 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  -u ( A Yrm 
M ) ) )  <_  ( ( abs `  ( A Yrm  K ) )  +  ( abs `  -u ( A Yrm 
M ) ) ) )
184 absneg 11762 . . . . . . . . . . . . . . 15  |-  ( ( A Yrm  M )  e.  CC  ->  ( abs `  -u ( A Yrm 
M ) )  =  ( abs `  ( A Yrm 
M ) ) )
185184eqcomd 2288 . . . . . . . . . . . . . 14  |-  ( ( A Yrm  M )  e.  CC  ->  ( abs `  ( A Yrm 
M ) )  =  ( abs `  -u ( A Yrm 
M ) ) )
186168, 185syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( A Yrm  M ) )  =  ( abs `  -u ( A Yrm  M ) ) )
187186oveq2d 5874 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  =  ( ( abs `  ( A Yrm  K ) )  +  ( abs `  -u ( A Yrm 
M ) ) ) )
188183, 187breqtrrd 4049 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  -u ( A Yrm 
M ) ) )  <_  ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) ) )
189 simpr1 961 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N ) )
190173, 176, 182, 188, 189lelttrd 8974 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  -u ( A Yrm 
M ) ) )  <  ( A Xrm  N ) )
191170, 190eqbrtrrd 4045 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  -  ( A Yrm  M ) ) )  < 
( A Xrm  N ) )
192164, 167zsubcld 10122 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  ( A Yrm  M ) )  e.  ZZ )
193192zcnd 10118 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  ( A Yrm  M ) )  e.  CC )
194193abscld 11918 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  -  ( A Yrm  M ) ) )  e.  RR )
195194, 182ltnled 8966 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( abs `  (
( A Yrm  K )  -  ( A Yrm  M ) ) )  <  ( A Xrm  N )  <->  -.  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  ( A Yrm  M ) ) ) ) )
196191, 195mpbid 201 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -.  ( A Xrm  N )  <_ 
( abs `  (
( A Yrm  K )  -  ( A Yrm  M ) ) ) )
197 simpr2 962 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
K )  =/=  ( A Yrm 
M ) )
198 subeq0 9073 . . . . . . . . . . . 12  |-  ( ( ( A Yrm  K )  e.  CC  /\  ( A Yrm  M )  e.  CC )  ->  ( ( ( A Yrm  K )  -  ( A Yrm 
M ) )  =  0  <->  ( A Yrm  K )  =  ( A Yrm  M ) ) )
199198necon3bid 2481 . . . . . . . . . . 11  |-  ( ( ( A Yrm  K )  e.  CC  /\  ( A Yrm  M )  e.  CC )  ->  ( ( ( A Yrm  K )  -  ( A Yrm 
M ) )  =/=  0  <->  ( A Yrm  K )  =/=  ( A Yrm  M ) ) )
200165, 168, 199syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( ( A Yrm  K )  -  ( A Yrm  M ) )  =/=  0  <->  ( A Yrm 
K )  =/=  ( A Yrm 
M ) ) )
201197, 200mpbird 223 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  ( A Yrm  M ) )  =/=  0 )
202 dvdsleabs 12575 . . . . . . . . 9  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  e.  ZZ  /\  ( ( A Yrm  K )  -  ( A Yrm 
M ) )  =/=  0 )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  ->  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  ( A Yrm  M ) ) ) ) )
203181, 192, 201, 202syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  ->  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  ( A Yrm  M ) ) ) ) )
204196, 203mtod 168 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -.  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) ) )
205165, 168subnegd 9164 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  -u ( A Yrm  M ) )  =  ( ( A Yrm  K )  +  ( A Yrm  M ) ) )
206205fveq2d 5529 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) )  =  ( abs `  (
( A Yrm  K )  +  ( A Yrm  M ) ) ) )
207165, 168addcld 8854 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  +  ( A Yrm  M ) )  e.  CC )
208207abscld 11918 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  ( A Yrm  M ) ) )  e.  RR )
209165, 168abstrid 11938 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  ( A Yrm  M ) ) )  <_ 
( ( abs `  ( A Yrm 
K ) )  +  ( abs `  ( A Yrm 
M ) ) ) )
210208, 176, 182, 209, 189lelttrd 8974 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  +  ( A Yrm  M ) ) )  < 
( A Xrm  N ) )
211206, 210eqbrtrd 4043 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) )  <  ( A Xrm  N ) )
212167znegcld 10119 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -u ( A Yrm 
M )  e.  ZZ )
213164, 212zsubcld 10122 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  -u ( A Yrm  M ) )  e.  ZZ )
214213zcnd 10118 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  -u ( A Yrm  M ) )  e.  CC )
215214abscld 11918 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) )  e.  RR )
216215, 182ltnled 8966 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( abs `  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) )  <  ( A Xrm  N )  <->  -.  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) ) )
217211, 216mpbid 201 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -.  ( A Xrm  N )  <_ 
( abs `  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )
218 simpr3 963 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( A Yrm 
K )  =/=  -u ( A Yrm 
M ) )
219 subeq0 9073 . . . . . . . . . . . 12  |-  ( ( ( A Yrm  K )  e.  CC  /\  -u ( A Yrm 
M )  e.  CC )  ->  ( ( ( A Yrm  K )  -  -u ( A Yrm 
M ) )  =  0  <->  ( A Yrm  K )  =  -u ( A Yrm  M ) ) )
220219necon3bid 2481 . . . . . . . . . . 11  |-  ( ( ( A Yrm  K )  e.  CC  /\  -u ( A Yrm 
M )  e.  CC )  ->  ( ( ( A Yrm  K )  -  -u ( A Yrm 
M ) )  =/=  0  <->  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )
221165, 171, 220syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( ( A Yrm  K )  -  -u ( A Yrm  M ) )  =/=  0  <->  ( A Yrm 
K )  =/=  -u ( A Yrm 
M ) ) )
222218, 221mpbird 223 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Yrm  K )  -  -u ( A Yrm  M ) )  =/=  0 )
223 dvdsleabs 12575 . . . . . . . . 9  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) )  e.  ZZ  /\  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) )  =/=  0 )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) )  ->  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) ) )
224181, 213, 222, 223syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) )  ->  ( A Xrm  N
)  <_  ( abs `  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) ) ) )
225217, 224mtod 168 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -.  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) )
226204, 225jca 518 . . . . . 6  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  ( -.  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  /\  -.  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )
227 pm4.56 481 . . . . . 6  |-  ( ( -.  ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  /\  -.  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm  M ) ) )  <->  -.  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) ) )
228226, 227sylib 188 . . . . 5  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  M  e.  ( 0 ... N
) ) )  /\  ( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) ) )  ->  -.  ( ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) )
229228ex 423 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  (
( ( ( abs `  ( A Yrm  K ) )  +  ( abs `  ( A Yrm 
M ) ) )  <  ( A Xrm  N )  /\  ( A Yrm  K )  =/=  ( A Yrm  M )  /\  ( A Yrm  K )  =/=  -u ( A Yrm  M ) )  ->  -.  (
( A Xrm  N )  ||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N )  ||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) ) ) )
230161, 229syld 40 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  ( K  =/=  M  ->  -.  ( ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) ) ) )
231230necon4ad 2507 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) ) )  ->  (
( ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm 
N )  ||  (
( A Yrm  K )  -  -u ( A Yrm  M ) ) )  ->  K  =  M ) )
2322313impia 1148 1  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  /\  ( ( A Xrm  N )  ||  (
( A Yrm  K )  -  ( A Yrm  M ) )  \/  ( A Xrm  N ) 
||  ( ( A Yrm  K )  -  -u ( A Yrm 
M ) ) ) )  ->  K  =  M )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    < clt 8867    <_ cle 8868    - cmin 9037   -ucneg 9038   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782   abscabs 11719    || cdivides 12531   Xrm crmx 26985   Yrm crmy 26986
This theorem is referenced by:  jm2.26  27095
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-dvds 12532  df-gcd 12686  df-numer 12806  df-denom 12807  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914  df-squarenn 26926  df-pell1qr 26927  df-pell14qr 26928  df-pell1234qr 26929  df-pellfund 26930  df-rmx 26987  df-rmy 26988
  Copyright terms: Public domain W3C validator