Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.27a Structured version   Unicode version

Theorem jm2.27a 27114
Description: Lemma for jm2.27 27117. Reverse direction after existential quantifiers are expanded. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Hypotheses
Ref Expression
jm2.27a1  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
jm2.27a2  |-  ( ph  ->  B  e.  NN )
jm2.27a3  |-  ( ph  ->  C  e.  NN )
jm2.27a4  |-  ( ph  ->  D  e.  NN0 )
jm2.27a5  |-  ( ph  ->  E  e.  NN0 )
jm2.27a6  |-  ( ph  ->  F  e.  NN0 )
jm2.27a7  |-  ( ph  ->  G  e.  NN0 )
jm2.27a8  |-  ( ph  ->  H  e.  NN0 )
jm2.27a9  |-  ( ph  ->  I  e.  NN0 )
jm2.27a10  |-  ( ph  ->  J  e.  NN0 )
jm2.27a11  |-  ( ph  ->  ( ( D ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( C ^ 2 ) ) )  =  1 )
jm2.27a12  |-  ( ph  ->  ( ( F ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( E ^ 2 ) ) )  =  1 )
jm2.27a13  |-  ( ph  ->  G  e.  ( ZZ>= ` 
2 ) )
jm2.27a14  |-  ( ph  ->  ( ( I ^
2 )  -  (
( ( G ^
2 )  -  1 )  x.  ( H ^ 2 ) ) )  =  1 )
jm2.27a15  |-  ( ph  ->  E  =  ( ( J  +  1 )  x.  ( 2  x.  ( C ^ 2 ) ) ) )
jm2.27a16  |-  ( ph  ->  F  ||  ( G  -  A ) )
jm2.27a17  |-  ( ph  ->  ( 2  x.  C
)  ||  ( G  -  1 ) )
jm2.27a18  |-  ( ph  ->  F  ||  ( H  -  C ) )
jm2.27a19  |-  ( ph  ->  ( 2  x.  C
)  ||  ( H  -  B ) )
jm2.27a20  |-  ( ph  ->  B  <_  C )
jm2.27a21  |-  ( ph  ->  P  e.  ZZ )
jm2.27a22  |-  ( ph  ->  D  =  ( A Xrm  P ) )
jm2.27a23  |-  ( ph  ->  C  =  ( A Yrm  P ) )
jm2.27a24  |-  ( ph  ->  Q  e.  ZZ )
jm2.27a25  |-  ( ph  ->  F  =  ( A Xrm  Q ) )
jm2.27a26  |-  ( ph  ->  E  =  ( A Yrm  Q ) )
jm2.27a27  |-  ( ph  ->  R  e.  ZZ )
jm2.27a28  |-  ( ph  ->  I  =  ( G Xrm  R ) )
jm2.27a29  |-  ( ph  ->  H  =  ( G Yrm  R ) )
Assertion
Ref Expression
jm2.27a  |-  ( ph  ->  C  =  ( A Yrm  B ) )

Proof of Theorem jm2.27a
StepHypRef Expression
1 jm2.27a23 . 2  |-  ( ph  ->  C  =  ( A Yrm  P ) )
2 2z 10343 . . . . . 6  |-  2  e.  ZZ
3 jm2.27a3 . . . . . . 7  |-  ( ph  ->  C  e.  NN )
43nnzd 10405 . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
5 zmulcl 10355 . . . . . 6  |-  ( ( 2  e.  ZZ  /\  C  e.  ZZ )  ->  ( 2  x.  C
)  e.  ZZ )
62, 4, 5sylancr 646 . . . . 5  |-  ( ph  ->  ( 2  x.  C
)  e.  ZZ )
7 jm2.27a2 . . . . . 6  |-  ( ph  ->  B  e.  NN )
87nnzd 10405 . . . . 5  |-  ( ph  ->  B  e.  ZZ )
9 jm2.27a27 . . . . 5  |-  ( ph  ->  R  e.  ZZ )
10 jm2.27a21 . . . . 5  |-  ( ph  ->  P  e.  ZZ )
11 jm2.27a8 . . . . . . . 8  |-  ( ph  ->  H  e.  NN0 )
1211nn0zd 10404 . . . . . . 7  |-  ( ph  ->  H  e.  ZZ )
13 jm2.27a19 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  C
)  ||  ( H  -  B ) )
14 congsym 27071 . . . . . . . 8  |-  ( ( ( ( 2  x.  C )  e.  ZZ  /\  H  e.  ZZ )  /\  ( B  e.  ZZ  /\  ( 2  x.  C )  ||  ( H  -  B
) ) )  -> 
( 2  x.  C
)  ||  ( B  -  H ) )
156, 12, 8, 13, 14syl22anc 1186 . . . . . . 7  |-  ( ph  ->  ( 2  x.  C
)  ||  ( B  -  H ) )
16 jm2.27a17 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  C
)  ||  ( G  -  1 ) )
17 jm2.27a13 . . . . . . . . . 10  |-  ( ph  ->  G  e.  ( ZZ>= ` 
2 ) )
1811nn0ge0d 10308 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <_  H )
19 rmy0 27030 . . . . . . . . . . . . . 14  |-  ( G  e.  ( ZZ>= `  2
)  ->  ( G Yrm  0 )  =  0 )
2017, 19syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G Yrm  0 )  =  0 )
21 jm2.27a29 . . . . . . . . . . . . . 14  |-  ( ph  ->  H  =  ( G Yrm  R ) )
2221eqcomd 2447 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G Yrm  R )  =  H )
2318, 20, 223brtr4d 4267 . . . . . . . . . . . 12  |-  ( ph  ->  ( G Yrm  0 )  <_ 
( G Yrm  R ) )
24 0z 10324 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
2524a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  0  e.  ZZ )
26 lermy 27058 . . . . . . . . . . . . 13  |-  ( ( G  e.  ( ZZ>= ` 
2 )  /\  0  e.  ZZ  /\  R  e.  ZZ )  ->  (
0  <_  R  <->  ( G Yrm  0 )  <_  ( G Yrm  R
) ) )
2717, 25, 9, 26syl3anc 1185 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  <_  R  <->  ( G Yrm  0 )  <_  ( G Yrm 
R ) ) )
2823, 27mpbird 225 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  R )
29 elnn0z 10325 . . . . . . . . . . 11  |-  ( R  e.  NN0  <->  ( R  e.  ZZ  /\  0  <_  R ) )
309, 28, 29sylanbrc 647 . . . . . . . . . 10  |-  ( ph  ->  R  e.  NN0 )
31 jm2.16nn0 27113 . . . . . . . . . 10  |-  ( ( G  e.  ( ZZ>= ` 
2 )  /\  R  e.  NN0 )  ->  ( G  -  1 ) 
||  ( ( G Yrm  R )  -  R ) )
3217, 30, 31syl2anc 644 . . . . . . . . 9  |-  ( ph  ->  ( G  -  1 )  ||  ( ( G Yrm  R )  -  R
) )
3321oveq1d 6125 . . . . . . . . 9  |-  ( ph  ->  ( H  -  R
)  =  ( ( G Yrm  R )  -  R
) )
3432, 33breqtrrd 4263 . . . . . . . 8  |-  ( ph  ->  ( G  -  1 )  ||  ( H  -  R ) )
35 jm2.27a7 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  NN0 )
3635nn0zd 10404 . . . . . . . . . 10  |-  ( ph  ->  G  e.  ZZ )
37 peano2zm 10351 . . . . . . . . . 10  |-  ( G  e.  ZZ  ->  ( G  -  1 )  e.  ZZ )
3836, 37syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G  -  1 )  e.  ZZ )
3912, 9zsubcld 10411 . . . . . . . . 9  |-  ( ph  ->  ( H  -  R
)  e.  ZZ )
40 dvdstr 12914 . . . . . . . . 9  |-  ( ( ( 2  x.  C
)  e.  ZZ  /\  ( G  -  1
)  e.  ZZ  /\  ( H  -  R
)  e.  ZZ )  ->  ( ( ( 2  x.  C ) 
||  ( G  - 
1 )  /\  ( G  -  1 ) 
||  ( H  -  R ) )  -> 
( 2  x.  C
)  ||  ( H  -  R ) ) )
416, 38, 39, 40syl3anc 1185 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  C )  ||  ( G  -  1
)  /\  ( G  -  1 )  ||  ( H  -  R
) )  ->  (
2  x.  C ) 
||  ( H  -  R ) ) )
4216, 34, 41mp2and 662 . . . . . . 7  |-  ( ph  ->  ( 2  x.  C
)  ||  ( H  -  R ) )
43 congtr 27068 . . . . . . 7  |-  ( ( ( ( 2  x.  C )  e.  ZZ  /\  B  e.  ZZ )  /\  ( H  e.  ZZ  /\  R  e.  ZZ )  /\  (
( 2  x.  C
)  ||  ( B  -  H )  /\  (
2  x.  C ) 
||  ( H  -  R ) ) )  ->  ( 2  x.  C )  ||  ( B  -  R )
)
446, 8, 12, 9, 15, 42, 43syl222anc 1201 . . . . . 6  |-  ( ph  ->  ( 2  x.  C
)  ||  ( B  -  R ) )
4544orcd 383 . . . . 5  |-  ( ph  ->  ( ( 2  x.  C )  ||  ( B  -  R )  \/  ( 2  x.  C
)  ||  ( B  -  -u R ) ) )
46 jm2.27a24 . . . . . . 7  |-  ( ph  ->  Q  e.  ZZ )
47 zmulcl 10355 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  Q  e.  ZZ )  ->  ( 2  x.  Q
)  e.  ZZ )
482, 46, 47sylancr 646 . . . . . 6  |-  ( ph  ->  ( 2  x.  Q
)  e.  ZZ )
49 zsqcl 11483 . . . . . . . . . . . . . 14  |-  ( C  e.  ZZ  ->  ( C ^ 2 )  e.  ZZ )
504, 49syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C ^ 2 )  e.  ZZ )
51 dvdsmul2 12903 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  ( C ^ 2 )  e.  ZZ )  -> 
( C ^ 2 )  ||  ( 2  x.  ( C ^
2 ) ) )
522, 50, 51sylancr 646 . . . . . . . . . . . 12  |-  ( ph  ->  ( C ^ 2 )  ||  ( 2  x.  ( C ^
2 ) ) )
53 jm2.27a10 . . . . . . . . . . . . . . 15  |-  ( ph  ->  J  e.  NN0 )
5453nn0zd 10404 . . . . . . . . . . . . . 14  |-  ( ph  ->  J  e.  ZZ )
5554peano2zd 10409 . . . . . . . . . . . . 13  |-  ( ph  ->  ( J  +  1 )  e.  ZZ )
56 zmulcl 10355 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  ZZ  /\  ( C ^ 2 )  e.  ZZ )  -> 
( 2  x.  ( C ^ 2 ) )  e.  ZZ )
572, 50, 56sylancr 646 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  x.  ( C ^ 2 ) )  e.  ZZ )
58 dvdsmultr2 12916 . . . . . . . . . . . . 13  |-  ( ( ( C ^ 2 )  e.  ZZ  /\  ( J  +  1
)  e.  ZZ  /\  ( 2  x.  ( C ^ 2 ) )  e.  ZZ )  -> 
( ( C ^
2 )  ||  (
2  x.  ( C ^ 2 ) )  ->  ( C ^
2 )  ||  (
( J  +  1 )  x.  ( 2  x.  ( C ^
2 ) ) ) ) )
5950, 55, 57, 58syl3anc 1185 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C ^
2 )  ||  (
2  x.  ( C ^ 2 ) )  ->  ( C ^
2 )  ||  (
( J  +  1 )  x.  ( 2  x.  ( C ^
2 ) ) ) ) )
6052, 59mpd 15 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ 2 )  ||  ( ( J  +  1 )  x.  ( 2  x.  ( C ^ 2 ) ) ) )
611oveq1d 6125 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ 2 )  =  ( ( A Yrm  P ) ^ 2 ) )
62 jm2.27a15 . . . . . . . . . . . 12  |-  ( ph  ->  E  =  ( ( J  +  1 )  x.  ( 2  x.  ( C ^ 2 ) ) ) )
63 jm2.27a26 . . . . . . . . . . . 12  |-  ( ph  ->  E  =  ( A Yrm  Q ) )
6462, 63eqtr3d 2476 . . . . . . . . . . 11  |-  ( ph  ->  ( ( J  + 
1 )  x.  (
2  x.  ( C ^ 2 ) ) )  =  ( A Yrm  Q ) )
6560, 61, 643brtr3d 4266 . . . . . . . . . 10  |-  ( ph  ->  ( ( A Yrm  P ) ^ 2 )  ||  ( A Yrm  Q ) )
66 jm2.27a1 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
6755zred 10406 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( J  +  1 )  e.  RR )
6857zred 10406 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2  x.  ( C ^ 2 ) )  e.  RR )
69 nn0p1nn 10290 . . . . . . . . . . . . . . . . . 18  |-  ( J  e.  NN0  ->  ( J  +  1 )  e.  NN )
7053, 69syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( J  +  1 )  e.  NN )
7170nngt0d 10074 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <  ( J  +  1 ) )
72 2nn 10164 . . . . . . . . . . . . . . . . . 18  |-  2  e.  NN
733nnsqcld 11574 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( C ^ 2 )  e.  NN )
74 nnmulcl 10054 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  NN  /\  ( C ^ 2 )  e.  NN )  -> 
( 2  x.  ( C ^ 2 ) )  e.  NN )
7572, 73, 74sylancr 646 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  x.  ( C ^ 2 ) )  e.  NN )
7675nngt0d 10074 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <  ( 2  x.  ( C ^
2 ) ) )
7767, 68, 71, 76mulgt0d 9256 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  <  ( ( J  +  1 )  x.  ( 2  x.  ( C ^ 2 ) ) ) )
7877, 62breqtrrd 4263 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  <  E )
79 rmy0 27030 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
8066, 79syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A Yrm  0 )  =  0 )
8163eqcomd 2447 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A Yrm  Q )  =  E )
8278, 80, 813brtr4d 4267 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A Yrm  0 )  < 
( A Yrm  Q ) )
83 ltrmy 27055 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  0  e.  ZZ  /\  Q  e.  ZZ )  ->  (
0  <  Q  <->  ( A Yrm  0 )  <  ( A Yrm  Q ) ) )
8466, 25, 46, 83syl3anc 1185 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0  <  Q  <->  ( A Yrm  0 )  <  ( A Yrm 
Q ) ) )
8582, 84mpbird 225 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  Q )
86 elnnz 10323 . . . . . . . . . . . 12  |-  ( Q  e.  NN  <->  ( Q  e.  ZZ  /\  0  < 
Q ) )
8746, 85, 86sylanbrc 647 . . . . . . . . . . 11  |-  ( ph  ->  Q  e.  NN )
883nngt0d 10074 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  <  C )
891eqcomd 2447 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A Yrm  P )  =  C )
9088, 80, 893brtr4d 4267 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A Yrm  0 )  < 
( A Yrm  P ) )
91 ltrmy 27055 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  0  e.  ZZ  /\  P  e.  ZZ )  ->  (
0  <  P  <->  ( A Yrm  0 )  <  ( A Yrm  P ) ) )
9266, 25, 10, 91syl3anc 1185 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0  <  P  <->  ( A Yrm  0 )  <  ( A Yrm 
P ) ) )
9390, 92mpbird 225 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  P )
94 elnnz 10323 . . . . . . . . . . . 12  |-  ( P  e.  NN  <->  ( P  e.  ZZ  /\  0  < 
P ) )
9510, 93, 94sylanbrc 647 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  NN )
96 jm2.20nn 27106 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  Q  e.  NN  /\  P  e.  NN )  ->  (
( ( A Yrm  P ) ^ 2 )  ||  ( A Yrm  Q )  <->  ( P  x.  ( A Yrm  P ) ) 
||  Q ) )
9766, 87, 95, 96syl3anc 1185 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A Yrm  P ) ^ 2 ) 
||  ( A Yrm  Q )  <-> 
( P  x.  ( A Yrm 
P ) )  ||  Q ) )
9865, 97mpbid 203 . . . . . . . . 9  |-  ( ph  ->  ( P  x.  ( A Yrm 
P ) )  ||  Q )
991, 4eqeltrrd 2517 . . . . . . . . . 10  |-  ( ph  ->  ( A Yrm  P )  e.  ZZ )
100 muldvds2 12906 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  ( A Yrm  P )  e.  ZZ  /\  Q  e.  ZZ )  ->  (
( P  x.  ( A Yrm 
P ) )  ||  Q  ->  ( A Yrm  P ) 
||  Q ) )
10110, 99, 46, 100syl3anc 1185 . . . . . . . . 9  |-  ( ph  ->  ( ( P  x.  ( A Yrm  P ) ) 
||  Q  ->  ( A Yrm 
P )  ||  Q
) )
10298, 101mpd 15 . . . . . . . 8  |-  ( ph  ->  ( A Yrm  P )  ||  Q )
1031, 102eqbrtrd 4257 . . . . . . 7  |-  ( ph  ->  C  ||  Q )
1042a1i 11 . . . . . . . 8  |-  ( ph  ->  2  e.  ZZ )
105 dvdscmul 12907 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  Q  e.  ZZ  /\  2  e.  ZZ )  ->  ( C  ||  Q  ->  (
2  x.  C ) 
||  ( 2  x.  Q ) ) )
1064, 46, 104, 105syl3anc 1185 . . . . . . 7  |-  ( ph  ->  ( C  ||  Q  ->  ( 2  x.  C
)  ||  ( 2  x.  Q ) ) )
107103, 106mpd 15 . . . . . 6  |-  ( ph  ->  ( 2  x.  C
)  ||  ( 2  x.  Q ) )
108 jm2.27a25 . . . . . . . . . 10  |-  ( ph  ->  F  =  ( A Xrm  Q ) )
109 jm2.27a6 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  NN0 )
110109nn0zd 10404 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ZZ )
111108, 110eqeltrrd 2517 . . . . . . . . 9  |-  ( ph  ->  ( A Xrm  Q )  e.  ZZ )
112 frmy 27015 . . . . . . . . . . 11  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
113112fovcl 6204 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  R  e.  ZZ )  ->  ( A Yrm 
R )  e.  ZZ )
11466, 9, 113syl2anc 644 . . . . . . . . 9  |-  ( ph  ->  ( A Yrm  R )  e.  ZZ )
11521, 12eqeltrrd 2517 . . . . . . . . 9  |-  ( ph  ->  ( G Yrm  R )  e.  ZZ )
116 eluzelz 10527 . . . . . . . . . . . . 13  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
11766, 116syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
118 jm2.27a16 . . . . . . . . . . . 12  |-  ( ph  ->  F  ||  ( G  -  A ) )
119 congsym 27071 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ZZ  /\  G  e.  ZZ )  /\  ( A  e.  ZZ  /\  F  ||  ( G  -  A
) ) )  ->  F  ||  ( A  -  G ) )
120110, 36, 117, 118, 119syl22anc 1186 . . . . . . . . . . 11  |-  ( ph  ->  F  ||  ( A  -  G ) )
121108, 120eqbrtrrd 4259 . . . . . . . . . 10  |-  ( ph  ->  ( A Xrm  Q )  ||  ( A  -  G
) )
122 jm2.15nn0 27112 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  G  e.  ( ZZ>= `  2 )  /\  R  e.  NN0 )  ->  ( A  -  G )  ||  (
( A Yrm  R )  -  ( G Yrm  R ) ) )
12366, 17, 30, 122syl3anc 1185 . . . . . . . . . 10  |-  ( ph  ->  ( A  -  G
)  ||  ( ( A Yrm 
R )  -  ( G Yrm 
R ) ) )
124117, 36zsubcld 10411 . . . . . . . . . . 11  |-  ( ph  ->  ( A  -  G
)  e.  ZZ )
125114, 115zsubcld 10411 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A Yrm  R )  -  ( G Yrm  R ) )  e.  ZZ )
126 dvdstr 12914 . . . . . . . . . . 11  |-  ( ( ( A Xrm  Q )  e.  ZZ  /\  ( A  -  G )  e.  ZZ  /\  ( ( A Yrm  R )  -  ( G Yrm 
R ) )  e.  ZZ )  ->  (
( ( A Xrm  Q ) 
||  ( A  -  G )  /\  ( A  -  G )  ||  ( ( A Yrm  R )  -  ( G Yrm  R ) ) )  ->  ( A Xrm 
Q )  ||  (
( A Yrm  R )  -  ( G Yrm  R ) ) ) )
127111, 124, 125, 126syl3anc 1185 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A Xrm  Q )  ||  ( A  -  G )  /\  ( A  -  G
)  ||  ( ( A Yrm 
R )  -  ( G Yrm 
R ) ) )  ->  ( A Xrm  Q ) 
||  ( ( A Yrm  R )  -  ( G Yrm  R ) ) ) )
128121, 123, 127mp2and 662 . . . . . . . . 9  |-  ( ph  ->  ( A Xrm  Q )  ||  ( ( A Yrm  R )  -  ( G Yrm  R ) ) )
129 jm2.27a18 . . . . . . . . . 10  |-  ( ph  ->  F  ||  ( H  -  C ) )
13021, 1oveq12d 6128 . . . . . . . . . 10  |-  ( ph  ->  ( H  -  C
)  =  ( ( G Yrm  R )  -  ( A Yrm 
P ) ) )
131129, 108, 1303brtr3d 4266 . . . . . . . . 9  |-  ( ph  ->  ( A Xrm  Q )  ||  ( ( G Yrm  R )  -  ( A Yrm  P ) ) )
132 congtr 27068 . . . . . . . . 9  |-  ( ( ( ( A Xrm  Q )  e.  ZZ  /\  ( A Yrm 
R )  e.  ZZ )  /\  ( ( G Yrm  R )  e.  ZZ  /\  ( A Yrm  P )  e.  ZZ )  /\  (
( A Xrm  Q )  ||  ( ( A Yrm  R )  -  ( G Yrm  R ) )  /\  ( A Xrm  Q )  ||  ( ( G Yrm  R )  -  ( A Yrm 
P ) ) ) )  ->  ( A Xrm  Q
)  ||  ( ( A Yrm 
R )  -  ( A Yrm 
P ) ) )
133111, 114, 115, 99, 128, 131, 132syl222anc 1201 . . . . . . . 8  |-  ( ph  ->  ( A Xrm  Q )  ||  ( ( A Yrm  R )  -  ( A Yrm  P ) ) )
134133orcd 383 . . . . . . 7  |-  ( ph  ->  ( ( A Xrm  Q ) 
||  ( ( A Yrm  R )  -  ( A Yrm  P ) )  \/  ( A Xrm 
Q )  ||  (
( A Yrm  R )  -  -u ( A Yrm  P ) ) ) )
135 jm2.26 27111 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  Q  e.  NN )  /\  ( R  e.  ZZ  /\  P  e.  ZZ ) )  ->  ( (
( A Xrm  Q )  ||  ( ( A Yrm  R )  -  ( A Yrm  P ) )  \/  ( A Xrm  Q )  ||  ( ( A Yrm  R )  -  -u ( A Yrm 
P ) ) )  <-> 
( ( 2  x.  Q )  ||  ( R  -  P )  \/  ( 2  x.  Q
)  ||  ( R  -  -u P ) ) ) )
13666, 87, 9, 10, 135syl22anc 1186 . . . . . . 7  |-  ( ph  ->  ( ( ( A Xrm  Q )  ||  ( ( A Yrm  R )  -  ( A Yrm 
P ) )  \/  ( A Xrm  Q )  ||  ( ( A Yrm  R )  -  -u ( A Yrm  P ) ) )  <->  ( (
2  x.  Q ) 
||  ( R  -  P )  \/  (
2  x.  Q ) 
||  ( R  -  -u P ) ) ) )
137134, 136mpbid 203 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  Q )  ||  ( R  -  P )  \/  ( 2  x.  Q
)  ||  ( R  -  -u P ) ) )
138 dvdsacongtr 27087 . . . . . 6  |-  ( ( ( ( 2  x.  Q )  e.  ZZ  /\  R  e.  ZZ )  /\  ( P  e.  ZZ  /\  ( 2  x.  C )  e.  ZZ )  /\  (
( 2  x.  C
)  ||  ( 2  x.  Q )  /\  ( ( 2  x.  Q )  ||  ( R  -  P )  \/  ( 2  x.  Q
)  ||  ( R  -  -u P ) ) ) )  ->  (
( 2  x.  C
)  ||  ( R  -  P )  \/  (
2  x.  C ) 
||  ( R  -  -u P ) ) )
13948, 9, 10, 6, 107, 137, 138syl222anc 1201 . . . . 5  |-  ( ph  ->  ( ( 2  x.  C )  ||  ( R  -  P )  \/  ( 2  x.  C
)  ||  ( R  -  -u P ) ) )
140 acongtr 27081 . . . . 5  |-  ( ( ( ( 2  x.  C )  e.  ZZ  /\  B  e.  ZZ )  /\  ( R  e.  ZZ  /\  P  e.  ZZ )  /\  (
( ( 2  x.  C )  ||  ( B  -  R )  \/  ( 2  x.  C
)  ||  ( B  -  -u R ) )  /\  ( ( 2  x.  C )  ||  ( R  -  P
)  \/  ( 2  x.  C )  ||  ( R  -  -u P
) ) ) )  ->  ( ( 2  x.  C )  ||  ( B  -  P
)  \/  ( 2  x.  C )  ||  ( B  -  -u P
) ) )
1416, 8, 9, 10, 45, 139, 140syl222anc 1201 . . . 4  |-  ( ph  ->  ( ( 2  x.  C )  ||  ( B  -  P )  \/  ( 2  x.  C
)  ||  ( B  -  -u P ) ) )
1427nnnn0d 10305 . . . . . 6  |-  ( ph  ->  B  e.  NN0 )
1433nnnn0d 10305 . . . . . 6  |-  ( ph  ->  C  e.  NN0 )
144 jm2.27a20 . . . . . 6  |-  ( ph  ->  B  <_  C )
145 elfz2nn0 11113 . . . . . 6  |-  ( B  e.  ( 0 ... C )  <->  ( B  e.  NN0  /\  C  e. 
NN0  /\  B  <_  C ) )
146142, 143, 144, 145syl3anbrc 1139 . . . . 5  |-  ( ph  ->  B  e.  ( 0 ... C ) )
14795nnnn0d 10305 . . . . . 6  |-  ( ph  ->  P  e.  NN0 )
148 rmygeid 27067 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  P  e.  NN0 )  ->  P  <_  ( A Yrm  P ) )
14966, 147, 148syl2anc 644 . . . . . . 7  |-  ( ph  ->  P  <_  ( A Yrm  P
) )
150149, 1breqtrrd 4263 . . . . . 6  |-  ( ph  ->  P  <_  C )
151 elfz2nn0 11113 . . . . . 6  |-  ( P  e.  ( 0 ... C )  <->  ( P  e.  NN0  /\  C  e. 
NN0  /\  P  <_  C ) )
152147, 143, 150, 151syl3anbrc 1139 . . . . 5  |-  ( ph  ->  P  e.  ( 0 ... C ) )
153 acongeq 27086 . . . . 5  |-  ( ( C  e.  NN  /\  B  e.  ( 0 ... C )  /\  P  e.  ( 0 ... C ) )  ->  ( B  =  P  <->  ( ( 2  x.  C )  ||  ( B  -  P
)  \/  ( 2  x.  C )  ||  ( B  -  -u P
) ) ) )
1543, 146, 152, 153syl3anc 1185 . . . 4  |-  ( ph  ->  ( B  =  P  <-> 
( ( 2  x.  C )  ||  ( B  -  P )  \/  ( 2  x.  C
)  ||  ( B  -  -u P ) ) ) )
155141, 154mpbird 225 . . 3  |-  ( ph  ->  B  =  P )
156155oveq2d 6126 . 2  |-  ( ph  ->  ( A Yrm  B )  =  ( A Yrm  P ) )
1571, 156eqtr4d 2477 1  |-  ( ph  ->  C  =  ( A Yrm  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1727   class class class wbr 4237   ` cfv 5483  (class class class)co 6110   0cc0 9021   1c1 9022    + caddc 9024    x. cmul 9026    < clt 9151    <_ cle 9152    - cmin 9322   -ucneg 9323   NNcn 10031   2c2 10080   NN0cn0 10252   ZZcz 10313   ZZ>=cuz 10519   ...cfz 11074   ^cexp 11413    || cdivides 12883   Xrm crmx 27001   Yrm crmy 27002
This theorem is referenced by:  jm2.27b  27115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-inf2 7625  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099  ax-addf 9100  ax-mulf 9101
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-iin 4120  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-se 4571  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-isom 5492  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-of 6334  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-2o 6754  df-oadd 6757  df-omul 6758  df-er 6934  df-map 7049  df-pm 7050  df-ixp 7093  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-fi 7445  df-sup 7475  df-oi 7508  df-card 7857  df-acn 7860  df-cda 8079  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-2 10089  df-3 10090  df-4 10091  df-5 10092  df-6 10093  df-7 10094  df-8 10095  df-9 10096  df-10 10097  df-n0 10253  df-z 10314  df-dec 10414  df-uz 10520  df-q 10606  df-rp 10644  df-xneg 10741  df-xadd 10742  df-xmul 10743  df-ioo 10951  df-ioc 10952  df-ico 10953  df-icc 10954  df-fz 11075  df-fzo 11167  df-fl 11233  df-mod 11282  df-seq 11355  df-exp 11414  df-fac 11598  df-bc 11625  df-hash 11650  df-shft 11913  df-cj 11935  df-re 11936  df-im 11937  df-sqr 12071  df-abs 12072  df-limsup 12296  df-clim 12313  df-rlim 12314  df-sum 12511  df-ef 12701  df-sin 12703  df-cos 12704  df-pi 12706  df-dvds 12884  df-gcd 13038  df-prm 13111  df-numer 13158  df-denom 13159  df-struct 13502  df-ndx 13503  df-slot 13504  df-base 13505  df-sets 13506  df-ress 13507  df-plusg 13573  df-mulr 13574  df-starv 13575  df-sca 13576  df-vsca 13577  df-tset 13579  df-ple 13580  df-ds 13582  df-unif 13583  df-hom 13584  df-cco 13585  df-rest 13681  df-topn 13682  df-topgen 13698  df-pt 13699  df-prds 13702  df-xrs 13757  df-0g 13758  df-gsum 13759  df-qtop 13764  df-imas 13765  df-xps 13767  df-mre 13842  df-mrc 13843  df-acs 13845  df-mnd 14721  df-submnd 14770  df-mulg 14846  df-cntz 15147  df-cmn 15445  df-psmet 16725  df-xmet 16726  df-met 16727  df-bl 16728  df-mopn 16729  df-fbas 16730  df-fg 16731  df-cnfld 16735  df-top 16994  df-bases 16996  df-topon 16997  df-topsp 16998  df-cld 17114  df-ntr 17115  df-cls 17116  df-nei 17193  df-lp 17231  df-perf 17232  df-cn 17322  df-cnp 17323  df-haus 17410  df-tx 17625  df-hmeo 17818  df-fil 17909  df-fm 18001  df-flim 18002  df-flf 18003  df-xms 18381  df-ms 18382  df-tms 18383  df-cncf 18939  df-limc 19784  df-dv 19785  df-log 20485  df-squarenn 26942  df-pell1qr 26943  df-pell14qr 26944  df-pell1234qr 26945  df-pellfund 26946  df-rmx 27003  df-rmy 27004
  Copyright terms: Public domain W3C validator