MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  join0 Unicode version

Theorem join0 14242
Description: Lemma for odumeet 14244. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Assertion
Ref Expression
join0  |-  ( join `  (/) )  =  (/)

Proof of Theorem join0
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4150 . . 3  |-  (/)  e.  _V
2 base0 13185 . . . 4  |-  (/)  =  (
Base `  (/) )
3 eqid 2283 . . . 4  |-  ( lub `  (/) )  =  ( lub `  (/) )
4 eqid 2283 . . . 4  |-  ( join `  (/) )  =  (
join `  (/) )
52, 3, 4joinfval 14121 . . 3  |-  ( (/)  e.  _V  ->  ( join `  (/) )  =  (
a  e.  (/) ,  b  e.  (/)  |->  ( ( lub `  (/) ) `  {
a ,  b } ) ) )
61, 5ax-mp 8 . 2  |-  ( join `  (/) )  =  ( a  e.  (/) ,  b  e.  (/)  |->  ( ( lub `  (/) ) `  {
a ,  b } ) )
7 mpt20 6199 . 2  |-  ( a  e.  (/) ,  b  e.  (/)  |->  ( ( lub `  (/) ) `  {
a ,  b } ) )  =  (/)
86, 7eqtri 2303 1  |-  ( join `  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   _Vcvv 2788   (/)c0 3455   {cpr 3641   ` cfv 5255    e. cmpt2 5860   lubclub 14076   joincjn 14078
This theorem is referenced by:  odujoin  14246
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-slot 13152  df-base 13153  df-join 14110
  Copyright terms: Public domain W3C validator