MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinval Unicode version

Theorem joinval 14372
Description: Value of join for a poset. (Contributed by NM, 12-Sep-2011.)
Hypotheses
Ref Expression
joinval.b  |-  B  =  ( Base `  K
)
joinval.u  |-  U  =  ( lub `  K
)
joinval.j  |-  .\/  =  ( join `  K )
Assertion
Ref Expression
joinval  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  =  ( U `
 { X ,  Y } ) )

Proof of Theorem joinval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 joinval.b . . . . 5  |-  B  =  ( Base `  K
)
2 joinval.u . . . . 5  |-  U  =  ( lub `  K
)
3 joinval.j . . . . 5  |-  .\/  =  ( join `  K )
41, 2, 3joinfval 14371 . . . 4  |-  ( K  e.  A  ->  .\/  =  ( x  e.  B ,  y  e.  B  |->  ( U `  {
x ,  y } ) ) )
54oveqd 6037 . . 3  |-  ( K  e.  A  ->  ( X  .\/  Y )  =  ( X ( x  e.  B ,  y  e.  B  |->  ( U `
 { x ,  y } ) ) Y ) )
6 preq1 3826 . . . . 5  |-  ( x  =  X  ->  { x ,  y }  =  { X ,  y } )
76fveq2d 5672 . . . 4  |-  ( x  =  X  ->  ( U `  { x ,  y } )  =  ( U `  { X ,  y } ) )
8 preq2 3827 . . . . 5  |-  ( y  =  Y  ->  { X ,  y }  =  { X ,  Y }
)
98fveq2d 5672 . . . 4  |-  ( y  =  Y  ->  ( U `  { X ,  y } )  =  ( U `  { X ,  Y }
) )
10 eqid 2387 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( U `
 { x ,  y } ) )  =  ( x  e.  B ,  y  e.  B  |->  ( U `  { x ,  y } ) )
11 fvex 5682 . . . 4  |-  ( U `
 { X ,  Y } )  e.  _V
127, 9, 10, 11ovmpt2 6148 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X ( x  e.  B ,  y  e.  B  |->  ( U `
 { x ,  y } ) ) Y )  =  ( U `  { X ,  Y } ) )
135, 12sylan9eq 2439 . 2  |-  ( ( K  e.  A  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( X  .\/  Y )  =  ( U `  { X ,  Y }
) )
14133impb 1149 1  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  =  ( U `
 { X ,  Y } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   {cpr 3758   ` cfv 5394  (class class class)co 6020    e. cmpt2 6022   Basecbs 13396   lubclub 14326   joincjn 14328
This theorem is referenced by:  joinval2  14373  joincomALT  14385  lubsn  14450  clatl  14470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-join 14360
  Copyright terms: Public domain W3C validator