MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinval Unicode version

Theorem joinval 14122
Description: Value of join for a poset. (Contributed by NM, 12-Sep-2011.)
Hypotheses
Ref Expression
joinval.b  |-  B  =  ( Base `  K
)
joinval.u  |-  U  =  ( lub `  K
)
joinval.j  |-  .\/  =  ( join `  K )
Assertion
Ref Expression
joinval  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  =  ( U `
 { X ,  Y } ) )

Proof of Theorem joinval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 joinval.b . . . . 5  |-  B  =  ( Base `  K
)
2 joinval.u . . . . 5  |-  U  =  ( lub `  K
)
3 joinval.j . . . . 5  |-  .\/  =  ( join `  K )
41, 2, 3joinfval 14121 . . . 4  |-  ( K  e.  A  ->  .\/  =  ( x  e.  B ,  y  e.  B  |->  ( U `  {
x ,  y } ) ) )
54oveqd 5875 . . 3  |-  ( K  e.  A  ->  ( X  .\/  Y )  =  ( X ( x  e.  B ,  y  e.  B  |->  ( U `
 { x ,  y } ) ) Y ) )
6 preq1 3706 . . . . 5  |-  ( x  =  X  ->  { x ,  y }  =  { X ,  y } )
76fveq2d 5529 . . . 4  |-  ( x  =  X  ->  ( U `  { x ,  y } )  =  ( U `  { X ,  y } ) )
8 preq2 3707 . . . . 5  |-  ( y  =  Y  ->  { X ,  y }  =  { X ,  Y }
)
98fveq2d 5529 . . . 4  |-  ( y  =  Y  ->  ( U `  { X ,  y } )  =  ( U `  { X ,  Y }
) )
10 eqid 2283 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( U `
 { x ,  y } ) )  =  ( x  e.  B ,  y  e.  B  |->  ( U `  { x ,  y } ) )
11 fvex 5539 . . . 4  |-  ( U `
 { X ,  Y } )  e.  _V
127, 9, 10, 11ovmpt2 5983 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X ( x  e.  B ,  y  e.  B  |->  ( U `
 { x ,  y } ) ) Y )  =  ( U `  { X ,  Y } ) )
135, 12sylan9eq 2335 . 2  |-  ( ( K  e.  A  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( X  .\/  Y )  =  ( U `  { X ,  Y }
) )
14133impb 1147 1  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  =  ( U `
 { X ,  Y } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   {cpr 3641   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   Basecbs 13148   lubclub 14076   joincjn 14078
This theorem is referenced by:  joinval2  14123  joincomALT  14135  lubsn  14200  clatl  14220
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-join 14110
  Copyright terms: Public domain W3C validator