HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass1 Structured version   Unicode version

Theorem kbass1 23619
Description: Dirac bra-ket associative law  (  |  A >.  <. B  |  )  |  C >.  =  |  A >. (
<. B  |  C >. ) i.e. the juxtaposition of an outer product with a ket equals a bra juxtaposed with an inner product. Since  <. B  |  C >. is a complex number, it is the first argument in the inner product  .h that it is mapped to, although in Dirac notation it is placed after the ket. (Contributed by NM, 15-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass1  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  ketbra  B ) `
 C )  =  ( ( ( bra `  B ) `  C
)  .h  A ) )

Proof of Theorem kbass1
StepHypRef Expression
1 kbval 23457 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  ketbra  B ) `
 C )  =  ( ( C  .ih  B )  .h  A ) )
2 braval 23447 . . . 4  |-  ( ( B  e.  ~H  /\  C  e.  ~H )  ->  ( ( bra `  B
) `  C )  =  ( C  .ih  B ) )
323adant1 975 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( bra `  B
) `  C )  =  ( C  .ih  B ) )
43oveq1d 6096 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( ( bra `  B
) `  C )  .h  A )  =  ( ( C  .ih  B
)  .h  A ) )
51, 4eqtr4d 2471 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  ketbra  B ) `
 C )  =  ( ( ( bra `  B ) `  C
)  .h  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5454  (class class class)co 6081   ~Hchil 22422    .h csm 22424    .ih csp 22425   bracbr 22459    ketbra ck 22460
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pr 4403  ax-hilex 22502
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-bra 23353  df-kb 23354
  Copyright terms: Public domain W3C validator