HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbval Unicode version

Theorem kbval 22534
Description: The value of the operator resulting from the outer product  |  A >.  <. B  | of two vectors. Equation 8.1 of [Prugovecki] p. 376. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
kbval  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  ketbra  B ) `
 C )  =  ( ( C  .ih  B )  .h  A ) )

Proof of Theorem kbval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 kbfval 22532 . . . 4  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  ketbra  B )  =  ( x  e. 
~H  |->  ( ( x 
.ih  B )  .h  A ) ) )
21fveq1d 5527 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  ketbra  B ) `  C )  =  ( ( x  e.  ~H  |->  ( ( x  .ih  B )  .h  A ) ) `
 C ) )
3 oveq1 5865 . . . . 5  |-  ( x  =  C  ->  (
x  .ih  B )  =  ( C  .ih  B ) )
43oveq1d 5873 . . . 4  |-  ( x  =  C  ->  (
( x  .ih  B
)  .h  A )  =  ( ( C 
.ih  B )  .h  A ) )
5 eqid 2283 . . . 4  |-  ( x  e.  ~H  |->  ( ( x  .ih  B )  .h  A ) )  =  ( x  e. 
~H  |->  ( ( x 
.ih  B )  .h  A ) )
6 ovex 5883 . . . 4  |-  ( ( C  .ih  B )  .h  A )  e. 
_V
74, 5, 6fvmpt 5602 . . 3  |-  ( C  e.  ~H  ->  (
( x  e.  ~H  |->  ( ( x  .ih  B )  .h  A ) ) `  C )  =  ( ( C 
.ih  B )  .h  A ) )
82, 7sylan9eq 2335 . 2  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  C  e.  ~H )  ->  ( ( A 
ketbra  B ) `  C
)  =  ( ( C  .ih  B )  .h  A ) )
983impa 1146 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  ketbra  B ) `
 C )  =  ( ( C  .ih  B )  .h  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   ~Hchil 21499    .h csm 21501    .ih csp 21502    ketbra ck 21537
This theorem is referenced by:  kbpj  22536  kbass1  22696  kbass2  22697  kbass5  22700  kbass6  22701
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-hilex 21579
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-kb 22431
  Copyright terms: Public domain W3C validator