MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  keephyp Unicode version

Theorem keephyp 3632
Description: Transform a hypothesis  ps that we want to keep (but contains the same class variable  A used in the eliminated hypothesis) for use with the weak deduction theorem. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
keephyp.1  |-  ( A  =  if ( ph ,  A ,  B )  ->  ( ps  <->  th )
)
keephyp.2  |-  ( B  =  if ( ph ,  A ,  B )  ->  ( ch  <->  th )
)
keephyp.3  |-  ps
keephyp.4  |-  ch
Assertion
Ref Expression
keephyp  |-  th

Proof of Theorem keephyp
StepHypRef Expression
1 keephyp.3 . 2  |-  ps
2 keephyp.4 . 2  |-  ch
3 keephyp.1 . . 3  |-  ( A  =  if ( ph ,  A ,  B )  ->  ( ps  <->  th )
)
4 keephyp.2 . . 3  |-  ( B  =  if ( ph ,  A ,  B )  ->  ( ch  <->  th )
)
53, 4ifboth 3609 . 2  |-  ( ( ps  /\  ch )  ->  th )
61, 2, 5mp2an 653 1  |-  th
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632   ifcif 3578
This theorem is referenced by:  keepel  3635  boxcutc  6875  fin23lem13  7974  abvtrivd  15621  znf1o  16521  zntoslem  16526  dscmet  18111  sqff1o  20436  lgsne0  20588  dchrisum0flblem1  20673  dchrisum0flblem2  20674
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-if 3579
  Copyright terms: Public domain W3C validator