Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac2 Unicode version

Theorem kelac2 27266
Description: Kelley's choice, most common form: compactness of a product of knob topologies recovers choice. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
kelac2.s  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  V )
kelac2.z  |-  ( (
ph  /\  x  e.  I )  ->  S  =/=  (/) )
kelac2.k  |-  ( ph  ->  ( Xt_ `  (
x  e.  I  |->  (
topGen `  { S ,  { ~P U. S } } ) ) )  e.  Comp )
Assertion
Ref Expression
kelac2  |-  ( ph  -> 
X_ x  e.  I  S  =/=  (/) )
Distinct variable groups:    ph, x    x, I
Allowed substitution hints:    S( x)    V( x)

Proof of Theorem kelac2
StepHypRef Expression
1 kelac2.z . 2  |-  ( (
ph  /\  x  e.  I )  ->  S  =/=  (/) )
2 kelac2.s . . 3  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  V )
3 kelac2lem 27265 . . 3  |-  ( S  e.  V  ->  ( topGen `
 { S ,  { ~P U. S } } )  e.  Comp )
4 cmptop 17138 . . 3  |-  ( (
topGen `  { S ,  { ~P U. S } } )  e.  Comp  -> 
( topGen `  { S ,  { ~P U. S } } )  e.  Top )
52, 3, 43syl 18 . 2  |-  ( (
ph  /\  x  e.  I )  ->  ( topGen `
 { S ,  { ~P U. S } } )  e.  Top )
6 uncom 3332 . . . . . . 7  |-  ( S  u.  { ~P U. S } )  =  ( { ~P U. S }  u.  S )
76difeq1i 3303 . . . . . 6  |-  ( ( S  u.  { ~P U. S } )  \  S )  =  ( ( { ~P U. S }  u.  S
)  \  S )
8 difun2 3546 . . . . . 6  |-  ( ( { ~P U. S }  u.  S )  \  S )  =  ( { ~P U. S }  \  S )
97, 8eqtri 2316 . . . . 5  |-  ( ( S  u.  { ~P U. S } )  \  S )  =  ( { ~P U. S }  \  S )
10 snex 4232 . . . . . . 7  |-  { ~P U. S }  e.  _V
11 uniprg 3858 . . . . . . 7  |-  ( ( S  e.  V  /\  { ~P U. S }  e.  _V )  ->  U. { S ,  { ~P U. S } }  =  ( S  u.  { ~P U. S } ) )
122, 10, 11sylancl 643 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  U. { S ,  { ~P U. S } }  =  ( S  u.  { ~P U. S } ) )
1312difeq1d 3306 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( U. { S ,  { ~P U. S } }  \  S )  =  ( ( S  u.  { ~P U. S } ) 
\  S ) )
14 incom 3374 . . . . . . 7  |-  ( { ~P U. S }  i^i  S )  =  ( S  i^i  { ~P U. S } )
15 pwuninel 6316 . . . . . . . . 9  |-  -.  ~P U. S  e.  S
1615a1i 10 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  -.  ~P U. S  e.  S
)
17 disjsn 3706 . . . . . . . 8  |-  ( ( S  i^i  { ~P U. S } )  =  (/) 
<->  -.  ~P U. S  e.  S )
1816, 17sylibr 203 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  ( S  i^i  { ~P U. S } )  =  (/) )
1914, 18syl5eq 2340 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( { ~P U. S }  i^i  S )  =  (/) )
20 disj3 3512 . . . . . 6  |-  ( ( { ~P U. S }  i^i  S )  =  (/) 
<->  { ~P U. S }  =  ( { ~P U. S }  \  S ) )
2119, 20sylib 188 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  { ~P U. S }  =  ( { ~P U. S }  \  S ) )
229, 13, 213eqtr4a 2354 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( U. { S ,  { ~P U. S } }  \  S )  =  { ~P U. S } )
23 prex 4233 . . . . . 6  |-  { S ,  { ~P U. S } }  e.  _V
24 bastg 16720 . . . . . 6  |-  ( { S ,  { ~P U. S } }  e.  _V  ->  { S ,  { ~P U. S } }  C_  ( topGen `  { S ,  { ~P U. S } } ) )
2523, 24mp1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  { S ,  { ~P U. S } }  C_  ( topGen `  { S ,  { ~P U. S } }
) )
2610prid2 3748 . . . . . 6  |-  { ~P U. S }  e.  { S ,  { ~P U. S } }
2726a1i 10 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  { ~P U. S }  e.  { S ,  { ~P U. S } } )
2825, 27sseldd 3194 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  { ~P U. S }  e.  (
topGen `  { S ,  { ~P U. S } } ) )
2922, 28eqeltrd 2370 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( U. { S ,  { ~P U. S } }  \  S )  e.  (
topGen `  { S ,  { ~P U. S } } ) )
30 prid1g 3745 . . . . 5  |-  ( S  e.  V  ->  S  e.  { S ,  { ~P U. S } }
)
31 elssuni 3871 . . . . 5  |-  ( S  e.  { S ,  { ~P U. S } }  ->  S  C_  U. { S ,  { ~P U. S } } )
322, 30, 313syl 18 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  S  C_ 
U. { S ,  { ~P U. S } } )
33 unitg 16721 . . . . . . 7  |-  ( { S ,  { ~P U. S } }  e.  _V  ->  U. ( topGen `  { S ,  { ~P U. S } } )  =  U. { S ,  { ~P U. S } } )
3423, 33ax-mp 8 . . . . . 6  |-  U. ( topGen `
 { S ,  { ~P U. S } } )  =  U. { S ,  { ~P U. S } }
3534eqcomi 2300 . . . . 5  |-  U. { S ,  { ~P U. S } }  =  U. ( topGen `  { S ,  { ~P U. S } } )
3635iscld2 16781 . . . 4  |-  ( ( ( topGen `  { S ,  { ~P U. S } } )  e.  Top  /\  S  C_  U. { S ,  { ~P U. S } } )  ->  ( S  e.  ( Clsd `  ( topGen `  { S ,  { ~P U. S } } ) )  <->  ( U. { S ,  { ~P U. S } }  \  S )  e.  (
topGen `  { S ,  { ~P U. S } } ) ) )
375, 32, 36syl2anc 642 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( S  e.  ( Clsd `  ( topGen `  { S ,  { ~P U. S } } ) )  <->  ( U. { S ,  { ~P U. S } }  \  S )  e.  (
topGen `  { S ,  { ~P U. S } } ) ) )
3829, 37mpbird 223 . 2  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  ( Clsd `  ( topGen `
 { S ,  { ~P U. S } } ) ) )
39 f1oi 5527 . . 3  |-  (  _I  |`  S ) : S -1-1-onto-> S
4039a1i 10 . 2  |-  ( (
ph  /\  x  e.  I )  ->  (  _I  |`  S ) : S -1-1-onto-> S )
41 elssuni 3871 . . . . 5  |-  ( { ~P U. S }  e.  { S ,  { ~P U. S } }  ->  { ~P U. S }  C_  U. { S ,  { ~P U. S } } )
4226, 41mp1i 11 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  { ~P U. S }  C_  U. { S ,  { ~P U. S } } )
43 uniexg 4533 . . . . . 6  |-  ( S  e.  V  ->  U. S  e.  _V )
44 pwexg 4210 . . . . . 6  |-  ( U. S  e.  _V  ->  ~P
U. S  e.  _V )
452, 43, 443syl 18 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ~P U. S  e.  _V )
46 snidg 3678 . . . . 5  |-  ( ~P
U. S  e.  _V  ->  ~P U. S  e. 
{ ~P U. S } )
4745, 46syl 15 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ~P U. S  e.  { ~P U. S } )
4842, 47sseldd 3194 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ~P U. S  e.  U. { S ,  { ~P U. S } } )
4948, 34syl6eleqr 2387 . 2  |-  ( (
ph  /\  x  e.  I )  ->  ~P U. S  e.  U. ( topGen `
 { S ,  { ~P U. S } } ) )
50 kelac2.k . 2  |-  ( ph  ->  ( Xt_ `  (
x  e.  I  |->  (
topGen `  { S ,  { ~P U. S } } ) ) )  e.  Comp )
511, 5, 38, 40, 49, 50kelac1 27264 1  |-  ( ph  -> 
X_ x  e.  I  S  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   _Vcvv 2801    \ cdif 3162    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   {cpr 3654   U.cuni 3843    e. cmpt 4093    _I cid 4320    |` cres 4707   -1-1-onto->wf1o 5270   ` cfv 5271   X_cixp 6833   topGenctg 13358   Xt_cpt 13359   Topctop 16647   Clsdccld 16769   Compccmp 17129
This theorem is referenced by:  dfac21  27267
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-topgen 13360  df-pt 13361  df-top 16652  df-bases 16654  df-cld 16772  df-cmp 17130
  Copyright terms: Public domain W3C validator