Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac2lem Unicode version

Theorem kelac2lem 27265
Description: Lemma for kelac2 27266 and dfac21 27267: knob topologies are compact. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
kelac2lem  |-  ( S  e.  V  ->  ( topGen `
 { S ,  { ~P U. S } } )  e.  Comp )

Proof of Theorem kelac2lem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prex 4233 . . . . 5  |-  { S ,  { ~P U. S } }  e.  _V
2 vex 2804 . . . . . . . 8  |-  x  e. 
_V
32elpr 3671 . . . . . . 7  |-  ( x  e.  { S ,  { ~P U. S } } 
<->  ( x  =  S  \/  x  =  { ~P U. S } ) )
4 vex 2804 . . . . . . . 8  |-  y  e. 
_V
54elpr 3671 . . . . . . 7  |-  ( y  e.  { S ,  { ~P U. S } } 
<->  ( y  =  S  \/  y  =  { ~P U. S } ) )
6 eqtr3 2315 . . . . . . . . 9  |-  ( ( x  =  S  /\  y  =  S )  ->  x  =  y )
76orcd 381 . . . . . . . 8  |-  ( ( x  =  S  /\  y  =  S )  ->  ( x  =  y  \/  ( x  i^i  y )  =  (/) ) )
8 ineq12 3378 . . . . . . . . . 10  |-  ( ( x  =  { ~P U. S }  /\  y  =  S )  ->  (
x  i^i  y )  =  ( { ~P U. S }  i^i  S
) )
9 incom 3374 . . . . . . . . . . 11  |-  ( { ~P U. S }  i^i  S )  =  ( S  i^i  { ~P U. S } )
10 pwuninel 6316 . . . . . . . . . . . 12  |-  -.  ~P U. S  e.  S
11 disjsn 3706 . . . . . . . . . . . 12  |-  ( ( S  i^i  { ~P U. S } )  =  (/) 
<->  -.  ~P U. S  e.  S )
1210, 11mpbir 200 . . . . . . . . . . 11  |-  ( S  i^i  { ~P U. S } )  =  (/)
139, 12eqtri 2316 . . . . . . . . . 10  |-  ( { ~P U. S }  i^i  S )  =  (/)
148, 13syl6eq 2344 . . . . . . . . 9  |-  ( ( x  =  { ~P U. S }  /\  y  =  S )  ->  (
x  i^i  y )  =  (/) )
1514olcd 382 . . . . . . . 8  |-  ( ( x  =  { ~P U. S }  /\  y  =  S )  ->  (
x  =  y  \/  ( x  i^i  y
)  =  (/) ) )
16 ineq12 3378 . . . . . . . . . 10  |-  ( ( x  =  S  /\  y  =  { ~P U. S } )  -> 
( x  i^i  y
)  =  ( S  i^i  { ~P U. S } ) )
1716, 12syl6eq 2344 . . . . . . . . 9  |-  ( ( x  =  S  /\  y  =  { ~P U. S } )  -> 
( x  i^i  y
)  =  (/) )
1817olcd 382 . . . . . . . 8  |-  ( ( x  =  S  /\  y  =  { ~P U. S } )  -> 
( x  =  y  \/  ( x  i^i  y )  =  (/) ) )
19 eqtr3 2315 . . . . . . . . 9  |-  ( ( x  =  { ~P U. S }  /\  y  =  { ~P U. S } )  ->  x  =  y )
2019orcd 381 . . . . . . . 8  |-  ( ( x  =  { ~P U. S }  /\  y  =  { ~P U. S } )  ->  (
x  =  y  \/  ( x  i^i  y
)  =  (/) ) )
217, 15, 18, 20ccase 912 . . . . . . 7  |-  ( ( ( x  =  S  \/  x  =  { ~P U. S } )  /\  ( y  =  S  \/  y  =  { ~P U. S } ) )  -> 
( x  =  y  \/  ( x  i^i  y )  =  (/) ) )
223, 5, 21syl2anb 465 . . . . . 6  |-  ( ( x  e.  { S ,  { ~P U. S } }  /\  y  e.  { S ,  { ~P U. S } }
)  ->  ( x  =  y  \/  (
x  i^i  y )  =  (/) ) )
2322rgen2a 2622 . . . . 5  |-  A. x  e.  { S ,  { ~P U. S } } A. y  e.  { S ,  { ~P U. S } }  ( x  =  y  \/  (
x  i^i  y )  =  (/) )
24 baspartn 16708 . . . . 5  |-  ( ( { S ,  { ~P U. S } }  e.  _V  /\  A. x  e.  { S ,  { ~P U. S } } A. y  e.  { S ,  { ~P U. S } }  ( x  =  y  \/  (
x  i^i  y )  =  (/) ) )  ->  { S ,  { ~P U. S } }  e.  TopBases )
251, 23, 24mp2an 653 . . . 4  |-  { S ,  { ~P U. S } }  e.  TopBases
26 tgcl 16723 . . . 4  |-  ( { S ,  { ~P U. S } }  e.  TopBases  -> 
( topGen `  { S ,  { ~P U. S } } )  e.  Top )
2725, 26mp1i 11 . . 3  |-  ( S  e.  V  ->  ( topGen `
 { S ,  { ~P U. S } } )  e.  Top )
28 prfi 7147 . . . . . 6  |-  { S ,  { ~P U. S } }  e.  Fin
29 pwfi 7167 . . . . . 6  |-  ( { S ,  { ~P U. S } }  e.  Fin 
<->  ~P { S ,  { ~P U. S } }  e.  Fin )
3028, 29mpbi 199 . . . . 5  |-  ~P { S ,  { ~P U. S } }  e.  Fin
31 tgdom 16732 . . . . . 6  |-  ( { S ,  { ~P U. S } }  e.  _V  ->  ( topGen `  { S ,  { ~P U. S } } )  ~<_  ~P { S ,  { ~P U. S } } )
321, 31ax-mp 8 . . . . 5  |-  ( topGen `  { S ,  { ~P U. S } }
)  ~<_  ~P { S ,  { ~P U. S } }
33 domfi 7100 . . . . 5  |-  ( ( ~P { S ,  { ~P U. S } }  e.  Fin  /\  ( topGen `
 { S ,  { ~P U. S } } )  ~<_  ~P { S ,  { ~P U. S } } )  ->  ( topGen `  { S ,  { ~P U. S } } )  e.  Fin )
3430, 32, 33mp2an 653 . . . 4  |-  ( topGen `  { S ,  { ~P U. S } }
)  e.  Fin
3534a1i 10 . . 3  |-  ( S  e.  V  ->  ( topGen `
 { S ,  { ~P U. S } } )  e.  Fin )
36 elin 3371 . . 3  |-  ( (
topGen `  { S ,  { ~P U. S } } )  e.  ( Top  i^i  Fin )  <->  ( ( topGen `  { S ,  { ~P U. S } } )  e.  Top  /\  ( topGen `  { S ,  { ~P U. S } } )  e.  Fin ) )
3727, 35, 36sylanbrc 645 . 2  |-  ( S  e.  V  ->  ( topGen `
 { S ,  { ~P U. S } } )  e.  ( Top  i^i  Fin )
)
38 fincmp 17136 . 2  |-  ( (
topGen `  { S ,  { ~P U. S } } )  e.  ( Top  i^i  Fin )  ->  ( topGen `  { S ,  { ~P U. S } } )  e.  Comp )
3937, 38syl 15 1  |-  ( S  e.  V  ->  ( topGen `
 { S ,  { ~P U. S } } )  e.  Comp )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    i^i cin 3164   (/)c0 3468   ~Pcpw 3638   {csn 3653   {cpr 3654   U.cuni 3843   class class class wbr 4039   ` cfv 5271    ~<_ cdom 6877   Fincfn 6879   topGenctg 13358   Topctop 16647   TopBasesctb 16651   Compccmp 17129
This theorem is referenced by:  kelac2  27266  dfac21  27267
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-topgen 13360  df-top 16652  df-bases 16654  df-cmp 17130
  Copyright terms: Public domain W3C validator