Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kercvrlsm Unicode version

Theorem kercvrlsm 27181
Description: The domain of a linear function is the subspace sum of the kernel and any subspace which covers the range. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
kercvrlsm.u  |-  U  =  ( LSubSp `  S )
kercvrlsm.p  |-  .(+)  =  (
LSSum `  S )
kercvrlsm.z  |-  .0.  =  ( 0g `  T )
kercvrlsm.k  |-  K  =  ( `' F " {  .0.  } )
kercvrlsm.b  |-  B  =  ( Base `  S
)
kercvrlsm.f  |-  ( ph  ->  F  e.  ( S LMHom 
T ) )
kercvrlsm.d  |-  ( ph  ->  D  e.  U )
kercvrlsm.cv  |-  ( ph  ->  ( F " D
)  =  ran  F
)
Assertion
Ref Expression
kercvrlsm  |-  ( ph  ->  ( K  .(+)  D )  =  B )

Proof of Theorem kercvrlsm
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kercvrlsm.f . . . . 5  |-  ( ph  ->  F  e.  ( S LMHom 
T ) )
2 lmhmlmod1 15790 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
31, 2syl 15 . . . 4  |-  ( ph  ->  S  e.  LMod )
4 kercvrlsm.k . . . . . 6  |-  K  =  ( `' F " {  .0.  } )
5 kercvrlsm.z . . . . . 6  |-  .0.  =  ( 0g `  T )
6 kercvrlsm.u . . . . . 6  |-  U  =  ( LSubSp `  S )
74, 5, 6lmhmkerlss 15808 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  K  e.  U )
81, 7syl 15 . . . 4  |-  ( ph  ->  K  e.  U )
9 kercvrlsm.d . . . 4  |-  ( ph  ->  D  e.  U )
10 kercvrlsm.p . . . . 5  |-  .(+)  =  (
LSSum `  S )
116, 10lsmcl 15836 . . . 4  |-  ( ( S  e.  LMod  /\  K  e.  U  /\  D  e.  U )  ->  ( K  .(+)  D )  e.  U )
123, 8, 9, 11syl3anc 1182 . . 3  |-  ( ph  ->  ( K  .(+)  D )  e.  U )
13 kercvrlsm.b . . . 4  |-  B  =  ( Base `  S
)
1413, 6lssss 15694 . . 3  |-  ( ( K  .(+)  D )  e.  U  ->  ( K 
.(+)  D )  C_  B
)
1512, 14syl 15 . 2  |-  ( ph  ->  ( K  .(+)  D ) 
C_  B )
16 eqid 2283 . . . . . . . . . . 11  |-  ( Base `  T )  =  (
Base `  T )
1713, 16lmhmf 15791 . . . . . . . . . 10  |-  ( F  e.  ( S LMHom  T
)  ->  F : B
--> ( Base `  T
) )
181, 17syl 15 . . . . . . . . 9  |-  ( ph  ->  F : B --> ( Base `  T ) )
19 ffn 5389 . . . . . . . . 9  |-  ( F : B --> ( Base `  T )  ->  F  Fn  B )
2018, 19syl 15 . . . . . . . 8  |-  ( ph  ->  F  Fn  B )
21 fnfvelrn 5662 . . . . . . . 8  |-  ( ( F  Fn  B  /\  a  e.  B )  ->  ( F `  a
)  e.  ran  F
)
2220, 21sylan 457 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  ( F `  a )  e.  ran  F )
23 kercvrlsm.cv . . . . . . . 8  |-  ( ph  ->  ( F " D
)  =  ran  F
)
2423adantr 451 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  ( F " D )  =  ran  F )
2522, 24eleqtrrd 2360 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  ( F `  a )  e.  ( F " D
) )
2620adantr 451 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  F  Fn  B )
2713, 6lssss 15694 . . . . . . . . 9  |-  ( D  e.  U  ->  D  C_  B )
289, 27syl 15 . . . . . . . 8  |-  ( ph  ->  D  C_  B )
2928adantr 451 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  D  C_  B )
30 fvelimab 5578 . . . . . . 7  |-  ( ( F  Fn  B  /\  D  C_  B )  -> 
( ( F `  a )  e.  ( F " D )  <->  E. b  e.  D  ( F `  b )  =  ( F `  a ) ) )
3126, 29, 30syl2anc 642 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
( F `  a
)  e.  ( F
" D )  <->  E. b  e.  D  ( F `  b )  =  ( F `  a ) ) )
3225, 31mpbid 201 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  E. b  e.  D  ( F `  b )  =  ( F `  a ) )
33 lmodgrp 15634 . . . . . . . . . . . . 13  |-  ( S  e.  LMod  ->  S  e. 
Grp )
343, 33syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  Grp )
3534adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  ->  S  e.  Grp )
36 simprl 732 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
a  e.  B )
3728sselda 3180 . . . . . . . . . . . 12  |-  ( (
ph  /\  b  e.  D )  ->  b  e.  B )
3837adantrl 696 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
b  e.  B )
39 eqid 2283 . . . . . . . . . . . 12  |-  ( +g  `  S )  =  ( +g  `  S )
40 eqid 2283 . . . . . . . . . . . 12  |-  ( -g `  S )  =  (
-g `  S )
4113, 39, 40grpnpcan 14557 . . . . . . . . . . 11  |-  ( ( S  e.  Grp  /\  a  e.  B  /\  b  e.  B )  ->  ( ( a (
-g `  S )
b ) ( +g  `  S ) b )  =  a )
4235, 36, 38, 41syl3anc 1182 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
( ( a (
-g `  S )
b ) ( +g  `  S ) b )  =  a )
4342adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  ( (
a ( -g `  S
) b ) ( +g  `  S ) b )  =  a )
443ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  S  e.  LMod )
4513, 6lssss 15694 . . . . . . . . . . . 12  |-  ( K  e.  U  ->  K  C_  B )
468, 45syl 15 . . . . . . . . . . 11  |-  ( ph  ->  K  C_  B )
4746ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  K  C_  B
)
4828ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  D  C_  B
)
49 eqcom 2285 . . . . . . . . . . . 12  |-  ( ( F `  b )  =  ( F `  a )  <->  ( F `  a )  =  ( F `  b ) )
50 lmghm 15788 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( S LMHom  T
)  ->  F  e.  ( S  GrpHom  T ) )
511, 50syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  ( S 
GrpHom  T ) )
5251adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  ->  F  e.  ( S  GrpHom  T ) )
5313, 5, 4, 40ghmeqker 14709 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  a  e.  B  /\  b  e.  B )  ->  (
( F `  a
)  =  ( F `
 b )  <->  ( a
( -g `  S ) b )  e.  K
) )
5452, 36, 38, 53syl3anc 1182 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
( ( F `  a )  =  ( F `  b )  <-> 
( a ( -g `  S ) b )  e.  K ) )
5549, 54syl5bb 248 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
( ( F `  b )  =  ( F `  a )  <-> 
( a ( -g `  S ) b )  e.  K ) )
5655biimpa 470 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  ( a
( -g `  S ) b )  e.  K
)
57 simplrr 737 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  b  e.  D )
5813, 39, 10lsmelvalix 14952 . . . . . . . . . 10  |-  ( ( ( S  e.  LMod  /\  K  C_  B  /\  D  C_  B )  /\  ( ( a (
-g `  S )
b )  e.  K  /\  b  e.  D
) )  ->  (
( a ( -g `  S ) b ) ( +g  `  S
) b )  e.  ( K  .(+)  D ) )
5944, 47, 48, 56, 57, 58syl32anc 1190 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  ( (
a ( -g `  S
) b ) ( +g  `  S ) b )  e.  ( K  .(+)  D )
)
6043, 59eqeltrrd 2358 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  a  e.  ( K  .(+)  D ) )
6160ex 423 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
( ( F `  b )  =  ( F `  a )  ->  a  e.  ( K  .(+)  D )
) )
6261anassrs 629 . . . . . 6  |-  ( ( ( ph  /\  a  e.  B )  /\  b  e.  D )  ->  (
( F `  b
)  =  ( F `
 a )  -> 
a  e.  ( K 
.(+)  D ) ) )
6362rexlimdva 2667 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  ( E. b  e.  D  ( F `  b )  =  ( F `  a )  ->  a  e.  ( K  .(+)  D ) ) )
6432, 63mpd 14 . . . 4  |-  ( (
ph  /\  a  e.  B )  ->  a  e.  ( K  .(+)  D ) )
6564ex 423 . . 3  |-  ( ph  ->  ( a  e.  B  ->  a  e.  ( K 
.(+)  D ) ) )
6665ssrdv 3185 . 2  |-  ( ph  ->  B  C_  ( K  .(+) 
D ) )
6715, 66eqssd 3196 1  |-  ( ph  ->  ( K  .(+)  D )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544    C_ wss 3152   {csn 3640   `'ccnv 4688   ran crn 4690   "cima 4692    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   0gc0g 13400   Grpcgrp 14362   -gcsg 14365    GrpHom cghm 14680   LSSumclsm 14945   LModclmod 15627   LSubSpclss 15689   LMHom clmhm 15776
This theorem is referenced by:  lmhmfgsplit  27184
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-subg 14618  df-ghm 14681  df-cntz 14793  df-lsm 14947  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-ur 15342  df-lmod 15629  df-lss 15690  df-lmhm 15779
  Copyright terms: Public domain W3C validator