Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  keridl Unicode version

Theorem keridl 26334
Description: The kernel of a ring homomorphism is an ideal. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
keridl.1  |-  G  =  ( 1st `  S
)
keridl.2  |-  Z  =  (GId `  G )
Assertion
Ref Expression
keridl  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( `' F " { Z }
)  e.  ( Idl `  R ) )

Proof of Theorem keridl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2388 . . . 4  |-  ( 1st `  R )  =  ( 1st `  R )
2 eqid 2388 . . . 4  |-  ran  ( 1st `  R )  =  ran  ( 1st `  R
)
3 keridl.1 . . . 4  |-  G  =  ( 1st `  S
)
4 eqid 2388 . . . 4  |-  ran  G  =  ran  G
51, 2, 3, 4rngohomf 26274 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  F : ran  ( 1st `  R
) --> ran  G )
6 cnvimass 5165 . . . 4  |-  ( `' F " { Z } )  C_  dom  F
7 fdm 5536 . . . 4  |-  ( F : ran  ( 1st `  R ) --> ran  G  ->  dom  F  =  ran  ( 1st `  R ) )
86, 7syl5sseq 3340 . . 3  |-  ( F : ran  ( 1st `  R ) --> ran  G  ->  ( `' F " { Z } )  C_  ran  ( 1st `  R
) )
95, 8syl 16 . 2  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( `' F " { Z }
)  C_  ran  ( 1st `  R ) )
10 eqid 2388 . . . . 5  |-  (GId `  ( 1st `  R ) )  =  (GId `  ( 1st `  R ) )
111, 2, 10rngo0cl 21835 . . . 4  |-  ( R  e.  RingOps  ->  (GId `  ( 1st `  R ) )  e.  ran  ( 1st `  R ) )
12113ad2ant1 978 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  (GId `  ( 1st `  R ) )  e.  ran  ( 1st `  R ) )
13 keridl.2 . . . . 5  |-  Z  =  (GId `  G )
141, 10, 3, 13rngohom0 26280 . . . 4  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( F `  (GId `  ( 1st `  R ) ) )  =  Z )
15 fvex 5683 . . . . 5  |-  ( F `
 (GId `  ( 1st `  R ) ) )  e.  _V
1615elsnc 3781 . . . 4  |-  ( ( F `  (GId `  ( 1st `  R ) ) )  e.  { Z }  <->  ( F `  (GId `  ( 1st `  R
) ) )  =  Z )
1714, 16sylibr 204 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( F `  (GId `  ( 1st `  R ) ) )  e.  { Z }
)
18 ffn 5532 . . . 4  |-  ( F : ran  ( 1st `  R ) --> ran  G  ->  F  Fn  ran  ( 1st `  R ) )
19 elpreima 5790 . . . 4  |-  ( F  Fn  ran  ( 1st `  R )  ->  (
(GId `  ( 1st `  R ) )  e.  ( `' F " { Z } )  <->  ( (GId `  ( 1st `  R
) )  e.  ran  ( 1st `  R )  /\  ( F `  (GId `  ( 1st `  R
) ) )  e. 
{ Z } ) ) )
205, 18, 193syl 19 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (GId `  ( 1st `  R
) )  e.  ( `' F " { Z } )  <->  ( (GId `  ( 1st `  R
) )  e.  ran  ( 1st `  R )  /\  ( F `  (GId `  ( 1st `  R
) ) )  e. 
{ Z } ) ) )
2112, 17, 20mpbir2and 889 . 2  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  (GId `  ( 1st `  R ) )  e.  ( `' F " { Z } ) )
22 an4 798 . . . . . . . 8  |-  ( ( ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  e.  { Z } )  /\  (
y  e.  ran  ( 1st `  R )  /\  ( F `  y )  e.  { Z }
) )  <->  ( (
x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) )  /\  ( ( F `  x )  e.  { Z }  /\  ( F `  y )  e.  { Z } ) ) )
231, 2, 3rngohomadd 26277 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( F `  (
x ( 1st `  R
) y ) )  =  ( ( F `
 x ) G ( F `  y
) ) )
2423adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) ) )  /\  (
( F `  x
)  =  Z  /\  ( F `  y )  =  Z ) )  ->  ( F `  ( x ( 1st `  R ) y ) )  =  ( ( F `  x ) G ( F `  y ) ) )
25 oveq12 6030 . . . . . . . . . . . . . 14  |-  ( ( ( F `  x
)  =  Z  /\  ( F `  y )  =  Z )  -> 
( ( F `  x ) G ( F `  y ) )  =  ( Z G Z ) )
2625adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) ) )  /\  (
( F `  x
)  =  Z  /\  ( F `  y )  =  Z ) )  ->  ( ( F `
 x ) G ( F `  y
) )  =  ( Z G Z ) )
273rngogrpo 21827 . . . . . . . . . . . . . . . 16  |-  ( S  e.  RingOps  ->  G  e.  GrpOp )
284, 13grpoidcl 21654 . . . . . . . . . . . . . . . . 17  |-  ( G  e.  GrpOp  ->  Z  e.  ran  G )
294, 13grpolid 21656 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  GrpOp  /\  Z  e.  ran  G )  -> 
( Z G Z )  =  Z )
3028, 29mpdan 650 . . . . . . . . . . . . . . . 16  |-  ( G  e.  GrpOp  ->  ( Z G Z )  =  Z )
3127, 30syl 16 . . . . . . . . . . . . . . 15  |-  ( S  e.  RingOps  ->  ( Z G Z )  =  Z )
32313ad2ant2 979 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( Z G Z )  =  Z )
3332ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) ) )  /\  (
( F `  x
)  =  Z  /\  ( F `  y )  =  Z ) )  ->  ( Z G Z )  =  Z )
3424, 26, 333eqtrd 2424 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) ) )  /\  (
( F `  x
)  =  Z  /\  ( F `  y )  =  Z ) )  ->  ( F `  ( x ( 1st `  R ) y ) )  =  Z )
3534ex 424 . . . . . . . . . . 11  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( ( ( F `
 x )  =  Z  /\  ( F `
 y )  =  Z )  ->  ( F `  ( x
( 1st `  R
) y ) )  =  Z ) )
36 fvex 5683 . . . . . . . . . . . . 13  |-  ( F `
 x )  e. 
_V
3736elsnc 3781 . . . . . . . . . . . 12  |-  ( ( F `  x )  e.  { Z }  <->  ( F `  x )  =  Z )
38 fvex 5683 . . . . . . . . . . . . 13  |-  ( F `
 y )  e. 
_V
3938elsnc 3781 . . . . . . . . . . . 12  |-  ( ( F `  y )  e.  { Z }  <->  ( F `  y )  =  Z )
4037, 39anbi12i 679 . . . . . . . . . . 11  |-  ( ( ( F `  x
)  e.  { Z }  /\  ( F `  y )  e.  { Z } )  <->  ( ( F `  x )  =  Z  /\  ( F `  y )  =  Z ) )
41 fvex 5683 . . . . . . . . . . . 12  |-  ( F `
 ( x ( 1st `  R ) y ) )  e. 
_V
4241elsnc 3781 . . . . . . . . . . 11  |-  ( ( F `  ( x ( 1st `  R
) y ) )  e.  { Z }  <->  ( F `  ( x ( 1st `  R
) y ) )  =  Z )
4335, 40, 423imtr4g 262 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( ( ( F `
 x )  e. 
{ Z }  /\  ( F `  y )  e.  { Z }
)  ->  ( F `  ( x ( 1st `  R ) y ) )  e.  { Z } ) )
4443imdistanda 675 . . . . . . . . 9  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) )  /\  ( ( F `  x )  e.  { Z }  /\  ( F `  y
)  e.  { Z } ) )  -> 
( ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) )  /\  ( F `  ( x
( 1st `  R
) y ) )  e.  { Z }
) ) )
451, 2rngogcl 21828 . . . . . . . . . . . 12  |-  ( ( R  e.  RingOps  /\  x  e.  ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) )  ->  (
x ( 1st `  R
) y )  e. 
ran  ( 1st `  R
) )
46453expib 1156 . . . . . . . . . . 11  |-  ( R  e.  RingOps  ->  ( ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R
) )  ->  (
x ( 1st `  R
) y )  e. 
ran  ( 1st `  R
) ) )
47463ad2ant1 978 . . . . . . . . . 10  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) )  -> 
( x ( 1st `  R ) y )  e.  ran  ( 1st `  R ) ) )
4847anim1d 548 . . . . . . . . 9  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) )  /\  ( F `
 ( x ( 1st `  R ) y ) )  e. 
{ Z } )  ->  ( ( x ( 1st `  R
) y )  e. 
ran  ( 1st `  R
)  /\  ( F `  ( x ( 1st `  R ) y ) )  e.  { Z } ) ) )
4944, 48syld 42 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) )  /\  ( ( F `  x )  e.  { Z }  /\  ( F `  y
)  e.  { Z } ) )  -> 
( ( x ( 1st `  R ) y )  e.  ran  ( 1st `  R )  /\  ( F `  ( x ( 1st `  R ) y ) )  e.  { Z } ) ) )
5022, 49syl5bi 209 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  e.  { Z } )  /\  (
y  e.  ran  ( 1st `  R )  /\  ( F `  y )  e.  { Z }
) )  ->  (
( x ( 1st `  R ) y )  e.  ran  ( 1st `  R )  /\  ( F `  ( x
( 1st `  R
) y ) )  e.  { Z }
) ) )
51 elpreima 5790 . . . . . . . . 9  |-  ( F  Fn  ran  ( 1st `  R )  ->  (
x  e.  ( `' F " { Z } )  <->  ( x  e.  ran  ( 1st `  R
)  /\  ( F `  x )  e.  { Z } ) ) )
525, 18, 513syl 19 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( x  e.  ( `' F " { Z } )  <->  ( x  e.  ran  ( 1st `  R
)  /\  ( F `  x )  e.  { Z } ) ) )
53 elpreima 5790 . . . . . . . . 9  |-  ( F  Fn  ran  ( 1st `  R )  ->  (
y  e.  ( `' F " { Z } )  <->  ( y  e.  ran  ( 1st `  R
)  /\  ( F `  y )  e.  { Z } ) ) )
545, 18, 533syl 19 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( y  e.  ( `' F " { Z } )  <->  ( y  e.  ran  ( 1st `  R
)  /\  ( F `  y )  e.  { Z } ) ) )
5552, 54anbi12d 692 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x  e.  ( `' F " { Z } )  /\  y  e.  ( `' F " { Z } ) )  <-> 
( ( x  e. 
ran  ( 1st `  R
)  /\  ( F `  x )  e.  { Z } )  /\  (
y  e.  ran  ( 1st `  R )  /\  ( F `  y )  e.  { Z }
) ) ) )
56 elpreima 5790 . . . . . . . 8  |-  ( F  Fn  ran  ( 1st `  R )  ->  (
( x ( 1st `  R ) y )  e.  ( `' F " { Z } )  <-> 
( ( x ( 1st `  R ) y )  e.  ran  ( 1st `  R )  /\  ( F `  ( x ( 1st `  R ) y ) )  e.  { Z } ) ) )
575, 18, 563syl 19 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x ( 1st `  R
) y )  e.  ( `' F " { Z } )  <->  ( (
x ( 1st `  R
) y )  e. 
ran  ( 1st `  R
)  /\  ( F `  ( x ( 1st `  R ) y ) )  e.  { Z } ) ) )
5850, 55, 573imtr4d 260 . . . . . 6  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x  e.  ( `' F " { Z } )  /\  y  e.  ( `' F " { Z } ) )  ->  ( x ( 1st `  R ) y )  e.  ( `' F " { Z } ) ) )
5958impl 604 . . . . 5  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e.  ( `' F " { Z }
) )  /\  y  e.  ( `' F " { Z } ) )  ->  ( x ( 1st `  R ) y )  e.  ( `' F " { Z } ) )
6059ralrimiva 2733 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e.  ( `' F " { Z } ) )  ->  A. y  e.  ( `' F " { Z } ) ( x ( 1st `  R
) y )  e.  ( `' F " { Z } ) )
6137anbi2i 676 . . . . . . 7  |-  ( ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  e.  { Z }
)  <->  ( x  e. 
ran  ( 1st `  R
)  /\  ( F `  x )  =  Z ) )
62 eqid 2388 . . . . . . . . . . . . . . . 16  |-  ( 2nd `  R )  =  ( 2nd `  R )
631, 62, 2rngocl 21819 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RingOps  /\  z  e.  ran  ( 1st `  R
)  /\  x  e.  ran  ( 1st `  R
) )  ->  (
z ( 2nd `  R
) x )  e. 
ran  ( 1st `  R
) )
64633expb 1154 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RingOps  /\  (
z  e.  ran  ( 1st `  R )  /\  x  e.  ran  ( 1st `  R ) ) )  ->  ( z ( 2nd `  R ) x )  e.  ran  ( 1st `  R ) )
65643ad2antl1 1119 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( z  e.  ran  ( 1st `  R )  /\  x  e.  ran  ( 1st `  R
) ) )  -> 
( z ( 2nd `  R ) x )  e.  ran  ( 1st `  R ) )
6665anass1rs 783 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e.  ran  ( 1st `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  -> 
( z ( 2nd `  R ) x )  e.  ran  ( 1st `  R ) )
6766adantlrr 702 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
z ( 2nd `  R
) x )  e. 
ran  ( 1st `  R
) )
68 eqid 2388 . . . . . . . . . . . . . . . 16  |-  ( 2nd `  S )  =  ( 2nd `  S )
691, 2, 62, 68rngohommul 26278 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( z  e.  ran  ( 1st `  R )  /\  x  e.  ran  ( 1st `  R
) ) )  -> 
( F `  (
z ( 2nd `  R
) x ) )  =  ( ( F `
 z ) ( 2nd `  S ) ( F `  x
) ) )
7069anass1rs 783 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e.  ran  ( 1st `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  -> 
( F `  (
z ( 2nd `  R
) x ) )  =  ( ( F `
 z ) ( 2nd `  S ) ( F `  x
) ) )
7170adantlrr 702 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  ( F `  ( z
( 2nd `  R
) x ) )  =  ( ( F `
 z ) ( 2nd `  S ) ( F `  x
) ) )
72 oveq2 6029 . . . . . . . . . . . . . . 15  |-  ( ( F `  x )  =  Z  ->  (
( F `  z
) ( 2nd `  S
) ( F `  x ) )  =  ( ( F `  z ) ( 2nd `  S ) Z ) )
7372adantl 453 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z )  -> 
( ( F `  z ) ( 2nd `  S ) ( F `
 x ) )  =  ( ( F `
 z ) ( 2nd `  S ) Z ) )
7473ad2antlr 708 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
( F `  z
) ( 2nd `  S
) ( F `  x ) )  =  ( ( F `  z ) ( 2nd `  S ) Z ) )
751, 2, 3, 4rngohomcl 26275 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  z  e. 
ran  ( 1st `  R
) )  ->  ( F `  z )  e.  ran  G )
7613, 4, 3, 68rngorz 21839 . . . . . . . . . . . . . . . 16  |-  ( ( S  e.  RingOps  /\  ( F `  z )  e.  ran  G )  -> 
( ( F `  z ) ( 2nd `  S ) Z )  =  Z )
77763ad2antl2 1120 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( F `
 z )  e. 
ran  G )  -> 
( ( F `  z ) ( 2nd `  S ) Z )  =  Z )
7875, 77syldan 457 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  z  e. 
ran  ( 1st `  R
) )  ->  (
( F `  z
) ( 2nd `  S
) Z )  =  Z )
7978adantlr 696 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
( F `  z
) ( 2nd `  S
) Z )  =  Z )
8071, 74, 793eqtrd 2424 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  ( F `  ( z
( 2nd `  R
) x ) )  =  Z )
81 fvex 5683 . . . . . . . . . . . . 13  |-  ( F `
 ( z ( 2nd `  R ) x ) )  e. 
_V
8281elsnc 3781 . . . . . . . . . . . 12  |-  ( ( F `  ( z ( 2nd `  R
) x ) )  e.  { Z }  <->  ( F `  ( z ( 2nd `  R
) x ) )  =  Z )
8380, 82sylibr 204 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  ( F `  ( z
( 2nd `  R
) x ) )  e.  { Z }
)
84 elpreima 5790 . . . . . . . . . . . . 13  |-  ( F  Fn  ran  ( 1st `  R )  ->  (
( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  <-> 
( ( z ( 2nd `  R ) x )  e.  ran  ( 1st `  R )  /\  ( F `  ( z ( 2nd `  R ) x ) )  e.  { Z } ) ) )
855, 18, 843syl 19 . . . . . . . . . . . 12  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
z ( 2nd `  R
) x )  e.  ( `' F " { Z } )  <->  ( (
z ( 2nd `  R
) x )  e. 
ran  ( 1st `  R
)  /\  ( F `  ( z ( 2nd `  R ) x ) )  e.  { Z } ) ) )
8685ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  <-> 
( ( z ( 2nd `  R ) x )  e.  ran  ( 1st `  R )  /\  ( F `  ( z ( 2nd `  R ) x ) )  e.  { Z } ) ) )
8767, 83, 86mpbir2and 889 . . . . . . . . . 10  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
z ( 2nd `  R
) x )  e.  ( `' F " { Z } ) )
881, 62, 2rngocl 21819 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RingOps  /\  x  e.  ran  ( 1st `  R
)  /\  z  e.  ran  ( 1st `  R
) )  ->  (
x ( 2nd `  R
) z )  e. 
ran  ( 1st `  R
) )
89883expb 1154 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RingOps  /\  (
x  e.  ran  ( 1st `  R )  /\  z  e.  ran  ( 1st `  R ) ) )  ->  ( x ( 2nd `  R ) z )  e.  ran  ( 1st `  R ) )
90893ad2antl1 1119 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  z  e.  ran  ( 1st `  R
) ) )  -> 
( x ( 2nd `  R ) z )  e.  ran  ( 1st `  R ) )
9190anassrs 630 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e.  ran  ( 1st `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  -> 
( x ( 2nd `  R ) z )  e.  ran  ( 1st `  R ) )
9291adantlrr 702 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
x ( 2nd `  R
) z )  e. 
ran  ( 1st `  R
) )
931, 2, 62, 68rngohommul 26278 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  z  e.  ran  ( 1st `  R
) ) )  -> 
( F `  (
x ( 2nd `  R
) z ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  z
) ) )
9493anassrs 630 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e.  ran  ( 1st `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  -> 
( F `  (
x ( 2nd `  R
) z ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  z
) ) )
9594adantlrr 702 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  ( F `  ( x
( 2nd `  R
) z ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  z
) ) )
96 oveq1 6028 . . . . . . . . . . . . . . 15  |-  ( ( F `  x )  =  Z  ->  (
( F `  x
) ( 2nd `  S
) ( F `  z ) )  =  ( Z ( 2nd `  S ) ( F `
 z ) ) )
9796adantl 453 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z )  -> 
( ( F `  x ) ( 2nd `  S ) ( F `
 z ) )  =  ( Z ( 2nd `  S ) ( F `  z
) ) )
9897ad2antlr 708 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
( F `  x
) ( 2nd `  S
) ( F `  z ) )  =  ( Z ( 2nd `  S ) ( F `
 z ) ) )
9913, 4, 3, 68rngolz 21838 . . . . . . . . . . . . . . . 16  |-  ( ( S  e.  RingOps  /\  ( F `  z )  e.  ran  G )  -> 
( Z ( 2nd `  S ) ( F `
 z ) )  =  Z )
100993ad2antl2 1120 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( F `
 z )  e. 
ran  G )  -> 
( Z ( 2nd `  S ) ( F `
 z ) )  =  Z )
10175, 100syldan 457 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  z  e. 
ran  ( 1st `  R
) )  ->  ( Z ( 2nd `  S
) ( F `  z ) )  =  Z )
102101adantlr 696 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  ( Z ( 2nd `  S
) ( F `  z ) )  =  Z )
10395, 98, 1023eqtrd 2424 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  ( F `  ( x
( 2nd `  R
) z ) )  =  Z )
104 fvex 5683 . . . . . . . . . . . . 13  |-  ( F `
 ( x ( 2nd `  R ) z ) )  e. 
_V
105104elsnc 3781 . . . . . . . . . . . 12  |-  ( ( F `  ( x ( 2nd `  R
) z ) )  e.  { Z }  <->  ( F `  ( x ( 2nd `  R
) z ) )  =  Z )
106103, 105sylibr 204 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  ( F `  ( x
( 2nd `  R
) z ) )  e.  { Z }
)
107 elpreima 5790 . . . . . . . . . . . . 13  |-  ( F  Fn  ran  ( 1st `  R )  ->  (
( x ( 2nd `  R ) z )  e.  ( `' F " { Z } )  <-> 
( ( x ( 2nd `  R ) z )  e.  ran  ( 1st `  R )  /\  ( F `  ( x ( 2nd `  R ) z ) )  e.  { Z } ) ) )
1085, 18, 1073syl 19 . . . . . . . . . . . 12  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x ( 2nd `  R
) z )  e.  ( `' F " { Z } )  <->  ( (
x ( 2nd `  R
) z )  e. 
ran  ( 1st `  R
)  /\  ( F `  ( x ( 2nd `  R ) z ) )  e.  { Z } ) ) )
109108ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
( x ( 2nd `  R ) z )  e.  ( `' F " { Z } )  <-> 
( ( x ( 2nd `  R ) z )  e.  ran  ( 1st `  R )  /\  ( F `  ( x ( 2nd `  R ) z ) )  e.  { Z } ) ) )
11092, 106, 109mpbir2and 889 . . . . . . . . . 10  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
x ( 2nd `  R
) z )  e.  ( `' F " { Z } ) )
11187, 110jca 519 . . . . . . . . 9  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  /\  z  e.  ran  ( 1st `  R
) )  ->  (
( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  ( x ( 2nd `  R ) z )  e.  ( `' F " { Z } ) ) )
112111ralrimiva 2733 . . . . . . . 8  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z ) )  ->  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  (
x ( 2nd `  R
) z )  e.  ( `' F " { Z } ) ) )
113112ex 424 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x  e.  ran  ( 1st `  R )  /\  ( F `  x )  =  Z )  ->  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  (
x ( 2nd `  R
) z )  e.  ( `' F " { Z } ) ) ) )
11461, 113syl5bi 209 . . . . . 6  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x  e.  ran  ( 1st `  R )  /\  ( F `  x )  e.  { Z }
)  ->  A. z  e.  ran  ( 1st `  R
) ( ( z ( 2nd `  R
) x )  e.  ( `' F " { Z } )  /\  ( x ( 2nd `  R ) z )  e.  ( `' F " { Z } ) ) ) )
11552, 114sylbid 207 . . . . 5  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( x  e.  ( `' F " { Z } )  ->  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  (
x ( 2nd `  R
) z )  e.  ( `' F " { Z } ) ) ) )
116115imp 419 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e.  ( `' F " { Z } ) )  ->  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  (
x ( 2nd `  R
) z )  e.  ( `' F " { Z } ) ) )
11760, 116jca 519 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e.  ( `' F " { Z } ) )  ->  ( A. y  e.  ( `' F " { Z } ) ( x ( 1st `  R
) y )  e.  ( `' F " { Z } )  /\  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  ( x ( 2nd `  R ) z )  e.  ( `' F " { Z } ) ) ) )
118117ralrimiva 2733 . 2  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  A. x  e.  ( `' F " { Z } ) ( A. y  e.  ( `' F " { Z } ) ( x ( 1st `  R
) y )  e.  ( `' F " { Z } )  /\  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  ( x ( 2nd `  R ) z )  e.  ( `' F " { Z } ) ) ) )
1191, 62, 2, 10isidl 26316 . . 3  |-  ( R  e.  RingOps  ->  ( ( `' F " { Z } )  e.  ( Idl `  R )  <-> 
( ( `' F " { Z } ) 
C_  ran  ( 1st `  R )  /\  (GId `  ( 1st `  R
) )  e.  ( `' F " { Z } )  /\  A. x  e.  ( `' F " { Z }
) ( A. y  e.  ( `' F " { Z } ) ( x ( 1st `  R
) y )  e.  ( `' F " { Z } )  /\  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  ( x ( 2nd `  R ) z )  e.  ( `' F " { Z } ) ) ) ) ) )
1201193ad2ant1 978 . 2  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( ( `' F " { Z } )  e.  ( Idl `  R )  <-> 
( ( `' F " { Z } ) 
C_  ran  ( 1st `  R )  /\  (GId `  ( 1st `  R
) )  e.  ( `' F " { Z } )  /\  A. x  e.  ( `' F " { Z }
) ( A. y  e.  ( `' F " { Z } ) ( x ( 1st `  R
) y )  e.  ( `' F " { Z } )  /\  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R ) x )  e.  ( `' F " { Z } )  /\  ( x ( 2nd `  R ) z )  e.  ( `' F " { Z } ) ) ) ) ) )
1219, 21, 118, 120mpbir3and 1137 1  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( `' F " { Z }
)  e.  ( Idl `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2650    C_ wss 3264   {csn 3758   `'ccnv 4818   dom cdm 4819   ran crn 4820   "cima 4822    Fn wfn 5390   -->wf 5391   ` cfv 5395  (class class class)co 6021   1stc1st 6287   2ndc2nd 6288   GrpOpcgr 21623  GIdcgi 21624   RingOpscrngo 21812    RngHom crnghom 26268   Idlcidl 26309
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-map 6957  df-grpo 21628  df-gid 21629  df-ginv 21630  df-ablo 21719  df-ghom 21795  df-rngo 21813  df-rngohom 26271  df-idl 26312
  Copyright terms: Public domain W3C validator