MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn2 Unicode version

Theorem kgencn2 17546
Description: A function  F : J
--> K from a compactly generated space is continuous iff for all compact spaces  z and continuous  g : z --> J, the composite  F  o.  g : z --> K is continuous. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( (𝑘Gen `  J )  Cn  K )  <->  ( F : X --> Y  /\  A. z  e.  Comp  A. g  e.  ( z  Cn  J
) ( F  o.  g )  e.  ( z  Cn  K ) ) ) )
Distinct variable groups:    z, g, F    g, J, z    g, K, z    g, X, z   
g, Y, z

Proof of Theorem kgencn2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 kgencn 17545 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( (𝑘Gen `  J )  Cn  K )  <->  ( F : X --> Y  /\  A. k  e.  ~P  X
( ( Jt  k )  e.  Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) ) ) ) )
2 rncmp 17417 . . . . . . . 8  |-  ( ( z  e.  Comp  /\  g  e.  ( z  Cn  J
) )  ->  ( Jt  ran  g )  e.  Comp )
32adantl 453 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  ( Jt  ran  g )  e.  Comp )
4 simprr 734 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  g  e.  ( z  Cn  J
) )
5 eqid 2408 . . . . . . . . . . . 12  |-  U. z  =  U. z
6 eqid 2408 . . . . . . . . . . . 12  |-  U. J  =  U. J
75, 6cnf 17268 . . . . . . . . . . 11  |-  ( g  e.  ( z  Cn  J )  ->  g : U. z --> U. J
)
8 frn 5560 . . . . . . . . . . 11  |-  ( g : U. z --> U. J  ->  ran  g  C_  U. J )
94, 7, 83syl 19 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  ran  g  C_  U. J )
10 toponuni 16951 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
1110ad3antrrr 711 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  X  =  U. J )
129, 11sseqtr4d 3349 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  ran  g  C_  X )
13 vex 2923 . . . . . . . . . . 11  |-  g  e. 
_V
1413rnex 5096 . . . . . . . . . 10  |-  ran  g  e.  _V
1514elpw 3769 . . . . . . . . 9  |-  ( ran  g  e.  ~P X  <->  ran  g  C_  X )
1612, 15sylibr 204 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  ran  g  e.  ~P X
)
17 oveq2 6052 . . . . . . . . . . 11  |-  ( k  =  ran  g  -> 
( Jt  k )  =  ( Jt  ran  g ) )
1817eleq1d 2474 . . . . . . . . . 10  |-  ( k  =  ran  g  -> 
( ( Jt  k )  e.  Comp  <->  ( Jt  ran  g
)  e.  Comp )
)
19 reseq2 5104 . . . . . . . . . . 11  |-  ( k  =  ran  g  -> 
( F  |`  k
)  =  ( F  |`  ran  g ) )
2017oveq1d 6059 . . . . . . . . . . 11  |-  ( k  =  ran  g  -> 
( ( Jt  k )  Cn  K )  =  ( ( Jt  ran  g
)  Cn  K ) )
2119, 20eleq12d 2476 . . . . . . . . . 10  |-  ( k  =  ran  g  -> 
( ( F  |`  k )  e.  ( ( Jt  k )  Cn  K )  <->  ( F  |` 
ran  g )  e.  ( ( Jt  ran  g
)  Cn  K ) ) )
2218, 21imbi12d 312 . . . . . . . . 9  |-  ( k  =  ran  g  -> 
( ( ( Jt  k )  e.  Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) )  <-> 
( ( Jt  ran  g
)  e.  Comp  ->  ( F  |`  ran  g )  e.  ( ( Jt  ran  g )  Cn  K
) ) ) )
2322rspcv 3012 . . . . . . . 8  |-  ( ran  g  e.  ~P X  ->  ( A. k  e. 
~P  X ( ( Jt  k )  e.  Comp  -> 
( F  |`  k
)  e.  ( ( Jt  k )  Cn  K
) )  ->  (
( Jt  ran  g )  e. 
Comp  ->  ( F  |`  ran  g )  e.  ( ( Jt  ran  g )  Cn  K ) ) ) )
2416, 23syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  ( A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) )  ->  ( ( Jt  ran  g )  e.  Comp  -> 
( F  |`  ran  g
)  e.  ( ( Jt 
ran  g )  Cn  K ) ) ) )
253, 24mpid 39 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  ( A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) )  ->  ( F  |`  ran  g )  e.  ( ( Jt  ran  g )  Cn  K ) ) )
26 simplll 735 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  J  e.  (TopOn `  X )
)
27 ssid 3331 . . . . . . . . . . 11  |-  ran  g  C_ 
ran  g
2827a1i 11 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  ran  g  C_  ran  g )
29 cnrest2 17308 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  ran  g  C_  ran  g  /\  ran  g  C_  X )  ->  ( g  e.  ( z  Cn  J
)  <->  g  e.  ( z  Cn  ( Jt  ran  g ) ) ) )
3026, 28, 12, 29syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  (
g  e.  ( z  Cn  J )  <->  g  e.  ( z  Cn  ( Jt  ran  g ) ) ) )
314, 30mpbid 202 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  g  e.  ( z  Cn  ( Jt  ran  g ) ) )
32 cnco 17288 . . . . . . . . 9  |-  ( ( g  e.  ( z  Cn  ( Jt  ran  g
) )  /\  ( F  |`  ran  g )  e.  ( ( Jt  ran  g )  Cn  K
) )  ->  (
( F  |`  ran  g
)  o.  g )  e.  ( z  Cn  K ) )
3332ex 424 . . . . . . . 8  |-  ( g  e.  ( z  Cn  ( Jt  ran  g ) )  ->  ( ( F  |`  ran  g )  e.  ( ( Jt  ran  g
)  Cn  K )  ->  ( ( F  |`  ran  g )  o.  g )  e.  ( z  Cn  K ) ) )
3431, 33syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  (
( F  |`  ran  g
)  e.  ( ( Jt 
ran  g )  Cn  K )  ->  (
( F  |`  ran  g
)  o.  g )  e.  ( z  Cn  K ) ) )
35 cores 5336 . . . . . . . . 9  |-  ( ran  g  C_  ran  g  -> 
( ( F  |`  ran  g )  o.  g
)  =  ( F  o.  g ) )
3627, 35ax-mp 8 . . . . . . . 8  |-  ( ( F  |`  ran  g )  o.  g )  =  ( F  o.  g
)
3736eleq1i 2471 . . . . . . 7  |-  ( ( ( F  |`  ran  g
)  o.  g )  e.  ( z  Cn  K )  <->  ( F  o.  g )  e.  ( z  Cn  K ) )
3834, 37syl6ib 218 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  (
( F  |`  ran  g
)  e.  ( ( Jt 
ran  g )  Cn  K )  ->  ( F  o.  g )  e.  ( z  Cn  K
) ) )
3925, 38syld 42 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  ( z  e. 
Comp  /\  g  e.  ( z  Cn  J ) ) )  ->  ( A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) )  ->  ( F  o.  g )  e.  ( z  Cn  K ) ) )
4039ralrimdvva 2765 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) )  ->  A. z  e.  Comp  A. g  e.  ( z  Cn  J ) ( F  o.  g )  e.  ( z  Cn  K ) ) )
41 oveq1 6051 . . . . . . . . 9  |-  ( z  =  ( Jt  k )  ->  ( z  Cn  J )  =  ( ( Jt  k )  Cn  J ) )
42 oveq1 6051 . . . . . . . . . 10  |-  ( z  =  ( Jt  k )  ->  ( z  Cn  K )  =  ( ( Jt  k )  Cn  K ) )
4342eleq2d 2475 . . . . . . . . 9  |-  ( z  =  ( Jt  k )  ->  ( ( F  o.  g )  e.  ( z  Cn  K
)  <->  ( F  o.  g )  e.  ( ( Jt  k )  Cn  K ) ) )
4441, 43raleqbidv 2880 . . . . . . . 8  |-  ( z  =  ( Jt  k )  ->  ( A. g  e.  ( z  Cn  J
) ( F  o.  g )  e.  ( z  Cn  K )  <->  A. g  e.  (
( Jt  k )  Cn  J ) ( F  o.  g )  e.  ( ( Jt  k )  Cn  K ) ) )
4544rspcv 3012 . . . . . . 7  |-  ( ( Jt  k )  e.  Comp  -> 
( A. z  e. 
Comp  A. g  e.  ( z  Cn  J ) ( F  o.  g
)  e.  ( z  Cn  K )  ->  A. g  e.  (
( Jt  k )  Cn  J ) ( F  o.  g )  e.  ( ( Jt  k )  Cn  K ) ) )
46 elpwi 3771 . . . . . . . . . . . 12  |-  ( k  e.  ~P X  -> 
k  C_  X )
4746adantl 453 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  k  C_  X )
48 resabs1 5138 . . . . . . . . . . 11  |-  ( k 
C_  X  ->  (
(  _I  |`  X )  |`  k )  =  (  _I  |`  k )
)
4947, 48syl 16 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  (
(  _I  |`  X )  |`  k )  =  (  _I  |`  k )
)
50 idcn 17279 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  X
)  ->  (  _I  |`  X )  e.  ( J  Cn  J ) )
5150ad3antrrr 711 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  (  _I  |`  X )  e.  ( J  Cn  J
) )
5210ad3antrrr 711 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  X  =  U. J )
5347, 52sseqtrd 3348 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  k  C_ 
U. J )
546cnrest 17307 . . . . . . . . . . 11  |-  ( ( (  _I  |`  X )  e.  ( J  Cn  J )  /\  k  C_ 
U. J )  -> 
( (  _I  |`  X )  |`  k )  e.  ( ( Jt  k )  Cn  J ) )
5551, 53, 54syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  (
(  _I  |`  X )  |`  k )  e.  ( ( Jt  k )  Cn  J ) )
5649, 55eqeltrrd 2483 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  (  _I  |`  k )  e.  ( ( Jt  k )  Cn  J ) )
57 coeq2 4994 . . . . . . . . . . 11  |-  ( g  =  (  _I  |`  k
)  ->  ( F  o.  g )  =  ( F  o.  (  _I  |`  k ) ) )
5857eleq1d 2474 . . . . . . . . . 10  |-  ( g  =  (  _I  |`  k
)  ->  ( ( F  o.  g )  e.  ( ( Jt  k )  Cn  K )  <->  ( F  o.  (  _I  |`  k
) )  e.  ( ( Jt  k )  Cn  K ) ) )
5958rspcv 3012 . . . . . . . . 9  |-  ( (  _I  |`  k )  e.  ( ( Jt  k )  Cn  J )  -> 
( A. g  e.  ( ( Jt  k )  Cn  J ) ( F  o.  g )  e.  ( ( Jt  k )  Cn  K )  ->  ( F  o.  (  _I  |`  k ) )  e.  ( ( Jt  k )  Cn  K
) ) )
6056, 59syl 16 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  ( A. g  e.  (
( Jt  k )  Cn  J ) ( F  o.  g )  e.  ( ( Jt  k )  Cn  K )  -> 
( F  o.  (  _I  |`  k ) )  e.  ( ( Jt  k )  Cn  K ) ) )
61 coires1 5350 . . . . . . . . 9  |-  ( F  o.  (  _I  |`  k
) )  =  ( F  |`  k )
6261eleq1i 2471 . . . . . . . 8  |-  ( ( F  o.  (  _I  |`  k ) )  e.  ( ( Jt  k )  Cn  K )  <->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) )
6360, 62syl6ib 218 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  ( A. g  e.  (
( Jt  k )  Cn  J ) ( F  o.  g )  e.  ( ( Jt  k )  Cn  K )  -> 
( F  |`  k
)  e.  ( ( Jt  k )  Cn  K
) ) )
6445, 63syl9r 69 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  (
( Jt  k )  e. 
Comp  ->  ( A. z  e.  Comp  A. g  e.  ( z  Cn  J ) ( F  o.  g
)  e.  ( z  Cn  K )  -> 
( F  |`  k
)  e.  ( ( Jt  k )  Cn  K
) ) ) )
6564com23 74 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  k  e.  ~P X )  ->  ( A. z  e.  Comp  A. g  e.  ( z  Cn  J ) ( F  o.  g )  e.  ( z  Cn  K )  ->  (
( Jt  k )  e. 
Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) ) ) )
6665ralrimdva 2760 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( A. z  e.  Comp  A. g  e.  ( z  Cn  J ) ( F  o.  g )  e.  ( z  Cn  K )  ->  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( F  |`  k
)  e.  ( ( Jt  k )  Cn  K
) ) ) )
6740, 66impbid 184 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) )  <->  A. z  e.  Comp  A. g  e.  ( z  Cn  J ) ( F  o.  g )  e.  ( z  Cn  K ) ) )
6867pm5.32da 623 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F : X --> Y  /\  A. k  e.  ~P  X
( ( Jt  k )  e.  Comp  ->  ( F  |`  k )  e.  ( ( Jt  k )  Cn  K ) ) )  <-> 
( F : X --> Y  /\  A. z  e. 
Comp  A. g  e.  ( z  Cn  J ) ( F  o.  g
)  e.  ( z  Cn  K ) ) ) )
691, 68bitrd 245 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( (𝑘Gen `  J )  Cn  K )  <->  ( F : X --> Y  /\  A. z  e.  Comp  A. g  e.  ( z  Cn  J
) ( F  o.  g )  e.  ( z  Cn  K ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2670    C_ wss 3284   ~Pcpw 3763   U.cuni 3979    _I cid 4457   ran crn 4842    |` cres 4843    o. ccom 4845   -->wf 5413   ` cfv 5417  (class class class)co 6044   ↾t crest 13607  TopOnctopon 16918    Cn ccn 17246   Compccmp 17407  𝑘Genckgen 17522
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-recs 6596  df-rdg 6631  df-1o 6687  df-oadd 6691  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-fin 7076  df-fi 7378  df-rest 13609  df-topgen 13626  df-top 16922  df-bases 16924  df-topon 16925  df-cn 17249  df-cmp 17408  df-kgen 17523
  Copyright terms: Public domain W3C validator