MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn3 Unicode version

Theorem kgencn3 17269
Description: The set of continuous functions from  J to  K is unaffected by k-ification of  K, if  J is already compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn3  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  ( J  Cn  K )  =  ( J  Cn  (𝑘Gen `  K ) ) )

Proof of Theorem kgencn3
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . . . . 7  |-  U. J  =  U. J
2 eqid 2296 . . . . . . 7  |-  U. K  =  U. K
31, 2cnf 16992 . . . . . 6  |-  ( f  e.  ( J  Cn  K )  ->  f : U. J --> U. K
)
43adantl 452 . . . . 5  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  f : U. J
--> U. K )
5 cnvimass 5049 . . . . . . . . 9  |-  ( `' f " x ) 
C_  dom  f
6 fdm 5409 . . . . . . . . . . 11  |-  ( f : U. J --> U. K  ->  dom  f  =  U. J )
74, 6syl 15 . . . . . . . . . 10  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  dom  f  =  U. J )
87adantr 451 . . . . . . . . 9  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  dom  f  =  U. J )
95, 8syl5sseq 3239 . . . . . . . 8  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  ( `' f
" x )  C_  U. J )
10 cnvresima 5178 . . . . . . . . . . . 12  |-  ( `' ( f  |`  y
) " ( x  i^i  ( f "
y ) ) )  =  ( ( `' f " ( x  i^i  ( f "
y ) ) )  i^i  y )
114ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  f : U. J --> U. K
)
12 ffun 5407 . . . . . . . . . . . . . . 15  |-  ( f : U. J --> U. K  ->  Fun  f )
13 inpreima 5668 . . . . . . . . . . . . . . 15  |-  ( Fun  f  ->  ( `' f " ( x  i^i  ( f " y
) ) )  =  ( ( `' f
" x )  i^i  ( `' f "
( f " y
) ) ) )
1411, 12, 133syl 18 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ( `' f " (
x  i^i  ( f " y ) ) )  =  ( ( `' f " x
)  i^i  ( `' f " ( f "
y ) ) ) )
1514ineq1d 3382 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( `' f "
( x  i^i  (
f " y ) ) )  i^i  y
)  =  ( ( ( `' f "
x )  i^i  ( `' f " (
f " y ) ) )  i^i  y
) )
16 in32 3394 . . . . . . . . . . . . . 14  |-  ( ( ( `' f "
x )  i^i  ( `' f " (
f " y ) ) )  i^i  y
)  =  ( ( ( `' f "
x )  i^i  y
)  i^i  ( `' f " ( f "
y ) ) )
17 ssrin 3407 . . . . . . . . . . . . . . . . . 18  |-  ( ( `' f " x
)  C_  dom  f  -> 
( ( `' f
" x )  i^i  y )  C_  ( dom  f  i^i  y
) )
185, 17ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  ( ( `' f " x
)  i^i  y )  C_  ( dom  f  i^i  y )
19 dminss 5111 . . . . . . . . . . . . . . . . 17  |-  ( dom  f  i^i  y ) 
C_  ( `' f
" ( f "
y ) )
2018, 19sstri 3201 . . . . . . . . . . . . . . . 16  |-  ( ( `' f " x
)  i^i  y )  C_  ( `' f "
( f " y
) )
2120a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( `' f "
x )  i^i  y
)  C_  ( `' f " ( f "
y ) ) )
22 df-ss 3179 . . . . . . . . . . . . . . 15  |-  ( ( ( `' f "
x )  i^i  y
)  C_  ( `' f " ( f "
y ) )  <->  ( (
( `' f "
x )  i^i  y
)  i^i  ( `' f " ( f "
y ) ) )  =  ( ( `' f " x )  i^i  y ) )
2321, 22sylib 188 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( ( `' f
" x )  i^i  y )  i^i  ( `' f " (
f " y ) ) )  =  ( ( `' f "
x )  i^i  y
) )
2416, 23syl5eq 2340 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( ( `' f
" x )  i^i  ( `' f "
( f " y
) ) )  i^i  y )  =  ( ( `' f "
x )  i^i  y
) )
2515, 24eqtrd 2328 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( `' f "
( x  i^i  (
f " y ) ) )  i^i  y
)  =  ( ( `' f " x
)  i^i  y )
)
2610, 25syl5eq 2340 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ( `' ( f  |`  y ) " (
x  i^i  ( f " y ) ) )  =  ( ( `' f " x
)  i^i  y )
)
27 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  f  e.  ( J  Cn  K ) )
2827ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  f  e.  ( J  Cn  K
) )
29 elpwi 3646 . . . . . . . . . . . . . . 15  |-  ( y  e.  ~P U. J  ->  y  C_  U. J )
3029ad2antrl 708 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  y  C_ 
U. J )
311cnrest 17029 . . . . . . . . . . . . . 14  |-  ( ( f  e.  ( J  Cn  K )  /\  y  C_  U. J )  ->  ( f  |`  y )  e.  ( ( Jt  y )  Cn  K ) )
3228, 30, 31syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
f  |`  y )  e.  ( ( Jt  y )  Cn  K ) )
33 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  K  e.  Top )
3433ad3antrrr 710 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  K  e.  Top )
352toptopon 16687 . . . . . . . . . . . . . . 15  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3634, 35sylib 188 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  K  e.  (TopOn `  U. K ) )
37 df-ima 4718 . . . . . . . . . . . . . . . 16  |-  ( f
" y )  =  ran  ( f  |`  y )
3837eqimss2i 3246 . . . . . . . . . . . . . . 15  |-  ran  (
f  |`  y )  C_  ( f " y
)
3938a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ran  ( f  |`  y
)  C_  ( f " y ) )
40 imassrn 5041 . . . . . . . . . . . . . . 15  |-  ( f
" y )  C_  ran  f
41 frn 5411 . . . . . . . . . . . . . . . 16  |-  ( f : U. J --> U. K  ->  ran  f  C_  U. K
)
4211, 41syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ran  f  C_  U. K )
4340, 42syl5ss 3203 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
f " y ) 
C_  U. K )
44 cnrest2 17030 . . . . . . . . . . . . . 14  |-  ( ( K  e.  (TopOn `  U. K )  /\  ran  ( f  |`  y
)  C_  ( f " y )  /\  ( f " y
)  C_  U. K )  ->  ( ( f  |`  y )  e.  ( ( Jt  y )  Cn  K )  <->  ( f  |`  y )  e.  ( ( Jt  y )  Cn  ( Kt  ( f "
y ) ) ) ) )
4536, 39, 43, 44syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( f  |`  y
)  e.  ( ( Jt  y )  Cn  K
)  <->  ( f  |`  y )  e.  ( ( Jt  y )  Cn  ( Kt  ( f "
y ) ) ) ) )
4632, 45mpbid 201 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
f  |`  y )  e.  ( ( Jt  y )  Cn  ( Kt  ( f
" y ) ) ) )
47 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  x  e.  (𝑘Gen `  K ) )
48 simprr 733 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ( Jt  y )  e.  Comp )
49 imacmp 17140 . . . . . . . . . . . . . 14  |-  ( ( f  e.  ( J  Cn  K )  /\  ( Jt  y )  e. 
Comp )  ->  ( Kt  ( f " y
) )  e.  Comp )
5028, 48, 49syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ( Kt  ( f " y
) )  e.  Comp )
51 kgeni 17248 . . . . . . . . . . . . 13  |-  ( ( x  e.  (𝑘Gen `  K
)  /\  ( Kt  (
f " y ) )  e.  Comp )  ->  ( x  i^i  (
f " y ) )  e.  ( Kt  ( f " y ) ) )
5247, 50, 51syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
x  i^i  ( f " y ) )  e.  ( Kt  ( f
" y ) ) )
53 cnima 17010 . . . . . . . . . . . 12  |-  ( ( ( f  |`  y
)  e.  ( ( Jt  y )  Cn  ( Kt  ( f " y
) ) )  /\  ( x  i^i  (
f " y ) )  e.  ( Kt  ( f " y ) ) )  ->  ( `' ( f  |`  y ) " (
x  i^i  ( f " y ) ) )  e.  ( Jt  y ) )
5446, 52, 53syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ( `' ( f  |`  y ) " (
x  i^i  ( f " y ) ) )  e.  ( Jt  y ) )
5526, 54eqeltrrd 2371 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( `' f "
x )  i^i  y
)  e.  ( Jt  y ) )
5655expr 598 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  y  e.  ~P U. J )  ->  (
( Jt  y )  e. 
Comp  ->  ( ( `' f " x )  i^i  y )  e.  ( Jt  y ) ) )
5756ralrimiva 2639 . . . . . . . 8  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  A. y  e.  ~P  U. J ( ( Jt  y )  e.  Comp  ->  ( ( `' f "
x )  i^i  y
)  e.  ( Jt  y ) ) )
58 kgentop 17253 . . . . . . . . . . 11  |-  ( J  e.  ran 𝑘Gen  ->  J  e.  Top )
5958ad3antrrr 710 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  J  e.  Top )
601toptopon 16687 . . . . . . . . . 10  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
6159, 60sylib 188 . . . . . . . . 9  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  J  e.  (TopOn `  U. J ) )
62 elkgen 17247 . . . . . . . . 9  |-  ( J  e.  (TopOn `  U. J )  ->  (
( `' f "
x )  e.  (𝑘Gen `  J )  <->  ( ( `' f " x
)  C_  U. J  /\  A. y  e.  ~P  U. J ( ( Jt  y )  e.  Comp  ->  ( ( `' f "
x )  i^i  y
)  e.  ( Jt  y ) ) ) ) )
6361, 62syl 15 . . . . . . . 8  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  ( ( `' f " x )  e.  (𝑘Gen `  J )  <->  ( ( `' f " x
)  C_  U. J  /\  A. y  e.  ~P  U. J ( ( Jt  y )  e.  Comp  ->  ( ( `' f "
x )  i^i  y
)  e.  ( Jt  y ) ) ) ) )
649, 57, 63mpbir2and 888 . . . . . . 7  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  ( `' f
" x )  e.  (𝑘Gen `  J ) )
65 kgenidm 17258 . . . . . . . 8  |-  ( J  e.  ran 𝑘Gen  ->  (𝑘Gen `  J
)  =  J )
6665ad3antrrr 710 . . . . . . 7  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  (𝑘Gen `  J )  =  J )
6764, 66eleqtrd 2372 . . . . . 6  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  ( `' f
" x )  e.  J )
6867ralrimiva 2639 . . . . 5  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  A. x  e.  (𝑘Gen `  K ) ( `' f " x )  e.  J )
6958, 60sylib 188 . . . . . . 7  |-  ( J  e.  ran 𝑘Gen  ->  J  e.  (TopOn `  U. J ) )
70 kgentopon 17249 . . . . . . . 8  |-  ( K  e.  (TopOn `  U. K )  ->  (𝑘Gen `  K )  e.  (TopOn `  U. K ) )
7135, 70sylbi 187 . . . . . . 7  |-  ( K  e.  Top  ->  (𝑘Gen `  K )  e.  (TopOn `  U. K ) )
72 iscn 16981 . . . . . . 7  |-  ( ( J  e.  (TopOn `  U. J )  /\  (𝑘Gen `  K )  e.  (TopOn `  U. K ) )  ->  ( f  e.  ( J  Cn  (𝑘Gen `  K ) )  <->  ( f : U. J --> U. K  /\  A. x  e.  (𝑘Gen `  K ) ( `' f " x )  e.  J ) ) )
7369, 71, 72syl2an 463 . . . . . 6  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  (
f  e.  ( J  Cn  (𝑘Gen `  K ) )  <-> 
( f : U. J
--> U. K  /\  A. x  e.  (𝑘Gen `  K
) ( `' f
" x )  e.  J ) ) )
7473adantr 451 . . . . 5  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  ( f  e.  ( J  Cn  (𝑘Gen `  K ) )  <->  ( f : U. J --> U. K  /\  A. x  e.  (𝑘Gen `  K ) ( `' f " x )  e.  J ) ) )
754, 68, 74mpbir2and 888 . . . 4  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  f  e.  ( J  Cn  (𝑘Gen `  K
) ) )
7675ex 423 . . 3  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  (
f  e.  ( J  Cn  K )  -> 
f  e.  ( J  Cn  (𝑘Gen `  K ) ) ) )
7776ssrdv 3198 . 2  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  ( J  Cn  K )  C_  ( J  Cn  (𝑘Gen `  K ) ) )
7871adantl 452 . . . 4  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  (𝑘Gen `  K )  e.  (TopOn `  U. K ) )
79 toponcom 16684 . . . 4  |-  ( ( K  e.  Top  /\  (𝑘Gen
`  K )  e.  (TopOn `  U. K ) )  ->  K  e.  (TopOn `  U. (𝑘Gen `  K
) ) )
8033, 78, 79syl2anc 642 . . 3  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  K  e.  (TopOn `  U. (𝑘Gen `  K
) ) )
81 kgenss 17254 . . . 4  |-  ( K  e.  Top  ->  K  C_  (𝑘Gen `  K ) )
8281adantl 452 . . 3  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  K  C_  (𝑘Gen `  K ) )
83 eqid 2296 . . . 4  |-  U. (𝑘Gen `  K )  =  U. (𝑘Gen
`  K )
8483cnss2 17022 . . 3  |-  ( ( K  e.  (TopOn `  U. (𝑘Gen `  K ) )  /\  K  C_  (𝑘Gen `  K ) )  -> 
( J  Cn  (𝑘Gen `  K ) )  C_  ( J  Cn  K
) )
8580, 82, 84syl2anc 642 . 2  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  ( J  Cn  (𝑘Gen `  K ) ) 
C_  ( J  Cn  K ) )
8677, 85eqssd 3209 1  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  ( J  Cn  K )  =  ( J  Cn  (𝑘Gen `  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    i^i cin 3164    C_ wss 3165   ~Pcpw 3638   U.cuni 3843   `'ccnv 4704   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708   Fun wfun 5265   -->wf 5267   ` cfv 5271  (class class class)co 5874   ↾t crest 13341   Topctop 16647  TopOnctopon 16648    Cn ccn 16970   Compccmp 17129  𝑘Genckgen 17244
This theorem is referenced by:  kgen2cn  17270  txkgen  17362  qtopkgen  17417
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-fin 6883  df-fi 7181  df-rest 13343  df-topgen 13360  df-top 16652  df-bases 16654  df-topon 16655  df-cn 16973  df-cmp 17130  df-kgen 17245
  Copyright terms: Public domain W3C validator