MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenf Structured version   Unicode version

Theorem kgenf 17604
Description: The compact generator is a function on topologies. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgenf  |- 𝑘Gen : Top --> Top

Proof of Theorem kgenf
Dummy variables  j 
k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2965 . . . . . . 7  |-  j  e. 
_V
21uniex 4734 . . . . . 6  |-  U. j  e.  _V
32pwex 4411 . . . . 5  |-  ~P U. j  e.  _V
43rabex 4383 . . . 4  |-  { x  e.  ~P U. j  | 
A. k  e.  ~P  U. j ( ( jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( jt  k ) ) }  e.  _V
54a1i 11 . . 3  |-  ( (  T.  /\  j  e. 
Top )  ->  { x  e.  ~P U. j  | 
A. k  e.  ~P  U. j ( ( jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( jt  k ) ) }  e.  _V )
6 df-kgen 17597 . . . 4  |- 𝑘Gen  =  (
j  e.  Top  |->  { x  e.  ~P U. j  |  A. k  e.  ~P  U. j ( ( jt  k )  e. 
Comp  ->  ( x  i^i  k )  e.  ( jt  k ) ) } )
76a1i 11 . . 3  |-  (  T. 
-> 𝑘Gen 
=  ( j  e. 
Top  |->  { x  e. 
~P U. j  |  A. k  e.  ~P  U. j
( ( jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( jt  k ) ) } ) )
8 kgenftop 17603 . . . 4  |-  ( x  e.  Top  ->  (𝑘Gen `  x )  e.  Top )
98adantl 454 . . 3  |-  ( (  T.  /\  x  e. 
Top )  ->  (𝑘Gen `  x )  e.  Top )
105, 7, 9fmpt2d 5927 . 2  |-  (  T. 
-> 𝑘Gen
: Top --> Top )
1110trud 1333 1  |- 𝑘Gen : Top --> Top
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    T. wtru 1326    = wceq 1653    e. wcel 1727   A.wral 2711   {crab 2715   _Vcvv 2962    i^i cin 3305   ~Pcpw 3823   U.cuni 4039    e. cmpt 4291   -->wf 5479   ` cfv 5483  (class class class)co 6110   ↾t crest 13679   Topctop 16989   Compccmp 17480  𝑘Genckgen 17596
This theorem is referenced by:  kgentop  17605  kgenidm  17610  iskgen2  17611  kgen2cn  17622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-recs 6662  df-rdg 6697  df-oadd 6757  df-er 6934  df-en 7139  df-fin 7142  df-fi 7445  df-rest 13681  df-topgen 13698  df-top 16994  df-bases 16996  df-topon 16997  df-cmp 17481  df-kgen 17597
  Copyright terms: Public domain W3C validator