MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenf Unicode version

Theorem kgenf 17336
Description: The compact generator is a function on topologies. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgenf  |- 𝑘Gen : Top --> Top

Proof of Theorem kgenf
Dummy variables  j 
k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2867 . . . . . . 7  |-  j  e. 
_V
21uniex 4595 . . . . . 6  |-  U. j  e.  _V
32pwex 4272 . . . . 5  |-  ~P U. j  e.  _V
43rabex 4244 . . . 4  |-  { x  e.  ~P U. j  | 
A. k  e.  ~P  U. j ( ( jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( jt  k ) ) }  e.  _V
54a1i 10 . . 3  |-  ( (  T.  /\  j  e. 
Top )  ->  { x  e.  ~P U. j  | 
A. k  e.  ~P  U. j ( ( jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( jt  k ) ) }  e.  _V )
6 df-kgen 17329 . . . 4  |- 𝑘Gen  =  (
j  e.  Top  |->  { x  e.  ~P U. j  |  A. k  e.  ~P  U. j ( ( jt  k )  e. 
Comp  ->  ( x  i^i  k )  e.  ( jt  k ) ) } )
76a1i 10 . . 3  |-  (  T. 
-> 𝑘Gen 
=  ( j  e. 
Top  |->  { x  e. 
~P U. j  |  A. k  e.  ~P  U. j
( ( jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( jt  k ) ) } ) )
8 kgenftop 17335 . . . 4  |-  ( x  e.  Top  ->  (𝑘Gen `  x )  e.  Top )
98adantl 452 . . 3  |-  ( (  T.  /\  x  e. 
Top )  ->  (𝑘Gen `  x )  e.  Top )
105, 7, 9fmpt2d 5768 . 2  |-  (  T. 
-> 𝑘Gen
: Top --> Top )
1110trud 1323 1  |- 𝑘Gen : Top --> Top
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    T. wtru 1316    = wceq 1642    e. wcel 1710   A.wral 2619   {crab 2623   _Vcvv 2864    i^i cin 3227   ~Pcpw 3701   U.cuni 3906    e. cmpt 4156   -->wf 5330   ` cfv 5334  (class class class)co 5942   ↾t crest 13418   Topctop 16731   Compccmp 17213  𝑘Genckgen 17328
This theorem is referenced by:  kgentop  17337  kgenidm  17342  iskgen2  17343  kgen2cn  17354
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-recs 6472  df-rdg 6507  df-oadd 6567  df-er 6744  df-en 6949  df-fin 6952  df-fi 7252  df-rest 13420  df-topgen 13437  df-top 16736  df-bases 16738  df-topon 16739  df-cmp 17214  df-kgen 17329
  Copyright terms: Public domain W3C validator