MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenhaus Structured version   Unicode version

Theorem kgenhaus 17576
Description: The compact generator generates another Hausdorff topology given a Hausdorff topology to start from. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgenhaus  |-  ( J  e.  Haus  ->  (𝑘Gen `  J
)  e.  Haus )

Proof of Theorem kgenhaus
StepHypRef Expression
1 haustop 17395 . . . 4  |-  ( J  e.  Haus  ->  J  e. 
Top )
2 eqid 2436 . . . . 5  |-  U. J  =  U. J
32toptopon 16998 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
41, 3sylib 189 . . 3  |-  ( J  e.  Haus  ->  J  e.  (TopOn `  U. J ) )
5 kgentopon 17570 . . 3  |-  ( J  e.  (TopOn `  U. J )  ->  (𝑘Gen `  J )  e.  (TopOn `  U. J ) )
64, 5syl 16 . 2  |-  ( J  e.  Haus  ->  (𝑘Gen `  J
)  e.  (TopOn `  U. J ) )
7 kgenss 17575 . . 3  |-  ( J  e.  Top  ->  J  C_  (𝑘Gen `  J ) )
81, 7syl 16 . 2  |-  ( J  e.  Haus  ->  J  C_  (𝑘Gen
`  J ) )
92sshaus 17439 . 2  |-  ( ( J  e.  Haus  /\  (𝑘Gen `  J )  e.  (TopOn `  U. J )  /\  J  C_  (𝑘Gen `  J ) )  ->  (𝑘Gen `  J )  e. 
Haus )
106, 8, 9mpd3an23 1281 1  |-  ( J  e.  Haus  ->  (𝑘Gen `  J
)  e.  Haus )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1725    C_ wss 3320   U.cuni 4015   ` cfv 5454   Topctop 16958  TopOnctopon 16959   Hauscha 17372  𝑘Genckgen 17565
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-recs 6633  df-rdg 6668  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-fin 7113  df-fi 7416  df-rest 13650  df-topgen 13667  df-top 16963  df-bases 16965  df-topon 16966  df-cn 17291  df-haus 17379  df-cmp 17450  df-kgen 17566
  Copyright terms: Public domain W3C validator