MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgeni Unicode version

Theorem kgeni 17232
Description: Property of the open sets in the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgeni  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( A  i^i  K
)  e.  ( Jt  K ) )

Proof of Theorem kgeni
Dummy variables  y  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inass 3379 . . . . 5  |-  ( ( A  i^i  K )  i^i  U. J )  =  ( A  i^i  ( K  i^i  U. J
) )
2 in32 3381 . . . . 5  |-  ( ( A  i^i  K )  i^i  U. J )  =  ( ( A  i^i  U. J )  i^i  K )
31, 2eqtr3i 2305 . . . 4  |-  ( A  i^i  ( K  i^i  U. J ) )  =  ( ( A  i^i  U. J )  i^i  K
)
4 df-kgen 17229 . . . . . . . . . . . 12  |- 𝑘Gen  =  (
j  e.  Top  |->  { x  e.  ~P U. j  |  A. y  e.  ~P  U. j ( ( jt  y )  e. 
Comp  ->  ( x  i^i  y )  e.  ( jt  y ) ) } )
54dmmptss 5169 . . . . . . . . . . 11  |-  dom 𝑘Gen  C_  Top
6 elfvdm 5554 . . . . . . . . . . 11  |-  ( A  e.  (𝑘Gen `  J )  ->  J  e.  dom 𝑘Gen )
75, 6sseldi 3178 . . . . . . . . . 10  |-  ( A  e.  (𝑘Gen `  J )  ->  J  e.  Top )
87adantr 451 . . . . . . . . 9  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  J  e.  Top )
9 eqid 2283 . . . . . . . . . 10  |-  U. J  =  U. J
109toptopon 16671 . . . . . . . . 9  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
118, 10sylib 188 . . . . . . . 8  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  J  e.  (TopOn `  U. J ) )
12 simpl 443 . . . . . . . 8  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  A  e.  (𝑘Gen `  J
) )
13 elkgen 17231 . . . . . . . . 9  |-  ( J  e.  (TopOn `  U. J )  ->  ( A  e.  (𝑘Gen `  J
)  <->  ( A  C_  U. J  /\  A. y  e.  ~P  U. J ( ( Jt  y )  e. 
Comp  ->  ( A  i^i  y )  e.  ( Jt  y ) ) ) ) )
1413biimpa 470 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  U. J )  /\  A  e.  (𝑘Gen `  J ) )  ->  ( A  C_  U. J  /\  A. y  e.  ~P  U. J ( ( Jt  y )  e. 
Comp  ->  ( A  i^i  y )  e.  ( Jt  y ) ) ) )
1511, 12, 14syl2anc 642 . . . . . . 7  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( A  C_  U. J  /\  A. y  e.  ~P  U. J ( ( Jt  y )  e.  Comp  ->  ( A  i^i  y )  e.  ( Jt  y ) ) ) )
1615simpld 445 . . . . . 6  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  A  C_  U. J )
17 df-ss 3166 . . . . . 6  |-  ( A 
C_  U. J  <->  ( A  i^i  U. J )  =  A )
1816, 17sylib 188 . . . . 5  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( A  i^i  U. J )  =  A )
1918ineq1d 3369 . . . 4  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( ( A  i^i  U. J )  i^i  K
)  =  ( A  i^i  K ) )
203, 19syl5eq 2327 . . 3  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( A  i^i  ( K  i^i  U. J ) )  =  ( A  i^i  K ) )
21 inss2 3390 . . . . 5  |-  ( K  i^i  U. J ) 
C_  U. J
22 cmptop 17122 . . . . . . . 8  |-  ( ( Jt  K )  e.  Comp  -> 
( Jt  K )  e.  Top )
2322adantl 452 . . . . . . 7  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( Jt  K )  e.  Top )
24 restrcl 16888 . . . . . . . 8  |-  ( ( Jt  K )  e.  Top  ->  ( J  e.  _V  /\  K  e.  _V )
)
2524simprd 449 . . . . . . 7  |-  ( ( Jt  K )  e.  Top  ->  K  e.  _V )
2623, 25syl 15 . . . . . 6  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  K  e.  _V )
27 inex1g 4157 . . . . . 6  |-  ( K  e.  _V  ->  ( K  i^i  U. J )  e.  _V )
28 elpwg 3632 . . . . . 6  |-  ( ( K  i^i  U. J
)  e.  _V  ->  ( ( K  i^i  U. J )  e.  ~P U. J  <->  ( K  i^i  U. J )  C_  U. J
) )
2926, 27, 283syl 18 . . . . 5  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( ( K  i^i  U. J )  e.  ~P U. J  <->  ( K  i^i  U. J )  C_  U. J
) )
3021, 29mpbiri 224 . . . 4  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( K  i^i  U. J )  e.  ~P U. J )
3115simprd 449 . . . 4  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  A. y  e.  ~P  U. J ( ( Jt  y )  e.  Comp  ->  ( A  i^i  y )  e.  ( Jt  y ) ) )
329restin 16897 . . . . . 6  |-  ( ( J  e.  Top  /\  K  e.  _V )  ->  ( Jt  K )  =  ( Jt  ( K  i^i  U. J ) ) )
338, 26, 32syl2anc 642 . . . . 5  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( Jt  K )  =  ( Jt  ( K  i^i  U. J ) ) )
34 simpr 447 . . . . 5  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( Jt  K )  e.  Comp )
3533, 34eqeltrrd 2358 . . . 4  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( Jt  ( K  i^i  U. J ) )  e. 
Comp )
36 oveq2 5866 . . . . . . 7  |-  ( y  =  ( K  i^i  U. J )  ->  ( Jt  y )  =  ( Jt  ( K  i^i  U. J ) ) )
3736eleq1d 2349 . . . . . 6  |-  ( y  =  ( K  i^i  U. J )  ->  (
( Jt  y )  e. 
Comp 
<->  ( Jt  ( K  i^i  U. J ) )  e. 
Comp ) )
38 ineq2 3364 . . . . . . 7  |-  ( y  =  ( K  i^i  U. J )  ->  ( A  i^i  y )  =  ( A  i^i  ( K  i^i  U. J ) ) )
3938, 36eleq12d 2351 . . . . . 6  |-  ( y  =  ( K  i^i  U. J )  ->  (
( A  i^i  y
)  e.  ( Jt  y )  <->  ( A  i^i  ( K  i^i  U. J
) )  e.  ( Jt  ( K  i^i  U. J ) ) ) )
4037, 39imbi12d 311 . . . . 5  |-  ( y  =  ( K  i^i  U. J )  ->  (
( ( Jt  y )  e.  Comp  ->  ( A  i^i  y )  e.  ( Jt  y ) )  <-> 
( ( Jt  ( K  i^i  U. J ) )  e.  Comp  ->  ( A  i^i  ( K  i^i  U. J ) )  e.  ( Jt  ( K  i^i  U. J
) ) ) ) )
4140rspcv 2880 . . . 4  |-  ( ( K  i^i  U. J
)  e.  ~P U. J  ->  ( A. y  e.  ~P  U. J ( ( Jt  y )  e. 
Comp  ->  ( A  i^i  y )  e.  ( Jt  y ) )  -> 
( ( Jt  ( K  i^i  U. J ) )  e.  Comp  ->  ( A  i^i  ( K  i^i  U. J ) )  e.  ( Jt  ( K  i^i  U. J
) ) ) ) )
4230, 31, 35, 41syl3c 57 . . 3  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( A  i^i  ( K  i^i  U. J ) )  e.  ( Jt  ( K  i^i  U. J
) ) )
4320, 42eqeltrrd 2358 . 2  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( A  i^i  K
)  e.  ( Jt  ( K  i^i  U. J
) ) )
4443, 33eleqtrrd 2360 1  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( A  i^i  K
)  e.  ( Jt  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547   _Vcvv 2788    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   U.cuni 3827   dom cdm 4689   ` cfv 5255  (class class class)co 5858   ↾t crest 13325   Topctop 16631  TopOnctopon 16632   Compccmp 17113  𝑘Genckgen 17228
This theorem is referenced by:  kgentopon  17233  kgencmp  17240  kgenidm  17242  llycmpkgen2  17245  1stckgen  17249  kgencn3  17253  txkgen  17346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-rest 13327  df-top 16636  df-topon 16639  df-cmp 17114  df-kgen 17229
  Copyright terms: Public domain W3C validator