MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem5 Unicode version

Theorem kmlem5 7780
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
kmlem5  |-  ( ( w  e.  x  /\  z  =/=  w )  -> 
( ( z  \  U. ( x  \  {
z } ) )  i^i  ( w  \  U. ( x  \  {
w } ) ) )  =  (/) )
Distinct variable group:    x, w, z

Proof of Theorem kmlem5
StepHypRef Expression
1 difss 3303 . . . 4  |-  ( w 
\  U. ( x  \  { w } ) )  C_  w
2 sslin 3395 . . . 4  |-  ( ( w  \  U. (
x  \  { w } ) )  C_  w  ->  ( ( z 
\  U. ( x  \  { z } ) )  i^i  ( w 
\  U. ( x  \  { w } ) ) )  C_  (
( z  \  U. ( x  \  { z } ) )  i^i  w ) )
31, 2ax-mp 8 . . 3  |-  ( ( z  \  U. (
x  \  { z } ) )  i^i  ( w  \  U. ( x  \  { w } ) ) ) 
C_  ( ( z 
\  U. ( x  \  { z } ) )  i^i  w )
4 kmlem4 7779 . . 3  |-  ( ( w  e.  x  /\  z  =/=  w )  -> 
( ( z  \  U. ( x  \  {
z } ) )  i^i  w )  =  (/) )
53, 4syl5sseq 3226 . 2  |-  ( ( w  e.  x  /\  z  =/=  w )  -> 
( ( z  \  U. ( x  \  {
z } ) )  i^i  ( w  \  U. ( x  \  {
w } ) ) )  C_  (/) )
6 ss0b 3484 . 2  |-  ( ( ( z  \  U. ( x  \  { z } ) )  i^i  ( w  \  U. ( x  \  { w } ) ) ) 
C_  (/)  <->  ( ( z 
\  U. ( x  \  { z } ) )  i^i  ( w 
\  U. ( x  \  { w } ) ) )  =  (/) )
75, 6sylib 188 1  |-  ( ( w  e.  x  /\  z  =/=  w )  -> 
( ( z  \  U. ( x  \  {
z } ) )  i^i  ( w  \  U. ( x  \  {
w } ) ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    \ cdif 3149    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640   U.cuni 3827
This theorem is referenced by:  kmlem9  7784
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-v 2790  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3456  df-sn 3646  df-uni 3828
  Copyright terms: Public domain W3C validator