MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqdisj Structured version   Unicode version

Theorem kqdisj 17766
Description: A version of imain 5531 for the topological indistinguishability map. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
kqdisj  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  (
( F " U
)  i^i  ( F " ( A  \  U
) ) )  =  (/) )
Distinct variable groups:    x, y, A    x, J, y    x, X, y
Allowed substitution hints:    U( x, y)    F( x, y)

Proof of Theorem kqdisj
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imadmres 5364 . . . . 5  |-  ( F
" dom  ( F  |`  ( A  \  U
) ) )  =  ( F " ( A  \  U ) )
2 dmres 5169 . . . . . . 7  |-  dom  ( F  |`  ( A  \  U ) )  =  ( ( A  \  U )  i^i  dom  F )
3 kqval.2 . . . . . . . . . . 11  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
43kqffn 17759 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
54adantr 453 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  F  Fn  X )
6 fndm 5546 . . . . . . . . 9  |-  ( F  Fn  X  ->  dom  F  =  X )
75, 6syl 16 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  dom  F  =  X )
87ineq2d 3544 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  (
( A  \  U
)  i^i  dom  F )  =  ( ( A 
\  U )  i^i 
X ) )
92, 8syl5eq 2482 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  dom  ( F  |`  ( A 
\  U ) )  =  ( ( A 
\  U )  i^i 
X ) )
109imaeq2d 5205 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  ( F " dom  ( F  |`  ( A  \  U
) ) )  =  ( F " (
( A  \  U
)  i^i  X )
) )
111, 10syl5eqr 2484 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  ( F " ( A  \  U ) )  =  ( F " (
( A  \  U
)  i^i  X )
) )
12 indif1 3587 . . . . . 6  |-  ( ( A  \  U )  i^i  X )  =  ( ( A  i^i  X )  \  U )
13 inss2 3564 . . . . . . 7  |-  ( A  i^i  X )  C_  X
14 ssdif 3484 . . . . . . 7  |-  ( ( A  i^i  X ) 
C_  X  ->  (
( A  i^i  X
)  \  U )  C_  ( X  \  U
) )
1513, 14ax-mp 8 . . . . . 6  |-  ( ( A  i^i  X ) 
\  U )  C_  ( X  \  U )
1612, 15eqsstri 3380 . . . . 5  |-  ( ( A  \  U )  i^i  X )  C_  ( X  \  U )
17 imass2 5242 . . . . 5  |-  ( ( ( A  \  U
)  i^i  X )  C_  ( X  \  U
)  ->  ( F " ( ( A  \  U )  i^i  X
) )  C_  ( F " ( X  \  U ) ) )
1816, 17mp1i 12 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  ( F " ( ( A 
\  U )  i^i 
X ) )  C_  ( F " ( X 
\  U ) ) )
1911, 18eqsstrd 3384 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  ( F " ( A  \  U ) )  C_  ( F " ( X 
\  U ) ) )
20 sslin 3569 . . 3  |-  ( ( F " ( A 
\  U ) ) 
C_  ( F "
( X  \  U
) )  ->  (
( F " U
)  i^i  ( F " ( A  \  U
) ) )  C_  ( ( F " U )  i^i  ( F " ( X  \  U ) ) ) )
2119, 20syl 16 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  (
( F " U
)  i^i  ( F " ( A  \  U
) ) )  C_  ( ( F " U )  i^i  ( F " ( X  \  U ) ) ) )
22 eldifn 3472 . . . . . . 7  |-  ( w  e.  ( X  \  U )  ->  -.  w  e.  U )
2322adantl 454 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  /\  w  e.  ( X  \  U
) )  ->  -.  w  e.  U )
24 simpll 732 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  /\  w  e.  ( X  \  U
) )  ->  J  e.  (TopOn `  X )
)
25 simplr 733 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  /\  w  e.  ( X  \  U
) )  ->  U  e.  J )
26 eldifi 3471 . . . . . . . 8  |-  ( w  e.  ( X  \  U )  ->  w  e.  X )
2726adantl 454 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  /\  w  e.  ( X  \  U
) )  ->  w  e.  X )
283kqfvima 17764 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  w  e.  X )  ->  (
w  e.  U  <->  ( F `  w )  e.  ( F " U ) ) )
2924, 25, 27, 28syl3anc 1185 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  /\  w  e.  ( X  \  U
) )  ->  (
w  e.  U  <->  ( F `  w )  e.  ( F " U ) ) )
3023, 29mtbid 293 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  /\  w  e.  ( X  \  U
) )  ->  -.  ( F `  w )  e.  ( F " U ) )
3130ralrimiva 2791 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  A. w  e.  ( X  \  U
)  -.  ( F `
 w )  e.  ( F " U
) )
32 difss 3476 . . . . 5  |-  ( X 
\  U )  C_  X
33 eleq1 2498 . . . . . . 7  |-  ( z  =  ( F `  w )  ->  (
z  e.  ( F
" U )  <->  ( F `  w )  e.  ( F " U ) ) )
3433notbid 287 . . . . . 6  |-  ( z  =  ( F `  w )  ->  ( -.  z  e.  ( F " U )  <->  -.  ( F `  w )  e.  ( F " U
) ) )
3534ralima 5980 . . . . 5  |-  ( ( F  Fn  X  /\  ( X  \  U ) 
C_  X )  -> 
( A. z  e.  ( F " ( X  \  U ) )  -.  z  e.  ( F " U )  <->  A. w  e.  ( X  \  U )  -.  ( F `  w
)  e.  ( F
" U ) ) )
365, 32, 35sylancl 645 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  ( A. z  e.  ( F " ( X  \  U ) )  -.  z  e.  ( F
" U )  <->  A. w  e.  ( X  \  U
)  -.  ( F `
 w )  e.  ( F " U
) ) )
3731, 36mpbird 225 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  A. z  e.  ( F " ( X  \  U ) )  -.  z  e.  ( F " U ) )
38 disjr 3671 . . 3  |-  ( ( ( F " U
)  i^i  ( F " ( X  \  U
) ) )  =  (/) 
<-> 
A. z  e.  ( F " ( X 
\  U ) )  -.  z  e.  ( F " U ) )
3937, 38sylibr 205 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  (
( F " U
)  i^i  ( F " ( X  \  U
) ) )  =  (/) )
40 sseq0 3661 . 2  |-  ( ( ( ( F " U )  i^i  ( F " ( A  \  U ) ) ) 
C_  ( ( F
" U )  i^i  ( F " ( X  \  U ) ) )  /\  ( ( F " U )  i^i  ( F "
( X  \  U
) ) )  =  (/) )  ->  ( ( F " U )  i^i  ( F "
( A  \  U
) ) )  =  (/) )
4121, 39, 40syl2anc 644 1  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  (
( F " U
)  i^i  ( F " ( A  \  U
) ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   {crab 2711    \ cdif 3319    i^i cin 3321    C_ wss 3322   (/)c0 3630    e. cmpt 4268   dom cdm 4880    |` cres 4882   "cima 4883    Fn wfn 5451   ` cfv 5456  TopOnctopon 16961
This theorem is referenced by:  kqcldsat  17767  regr1lem  17773
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-fv 5464  df-topon 16968
  Copyright terms: Public domain W3C validator