MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqnrmlem1 Unicode version

Theorem kqnrmlem1 17450
Description: A Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
kqnrmlem1  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  ->  (KQ `  J )  e.  Nrm )
Distinct variable groups:    x, y, J    x, X, y
Allowed substitution hints:    F( x, y)

Proof of Theorem kqnrmlem1
Dummy variables  m  w  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . 5  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
21kqtopon 17434 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  (KQ `  J
)  e.  (TopOn `  ran  F ) )
32adantr 451 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  ->  (KQ `  J )  e.  (TopOn `  ran  F ) )
4 topontop 16680 . . 3  |-  ( (KQ
`  J )  e.  (TopOn `  ran  F )  ->  (KQ `  J
)  e.  Top )
53, 4syl 15 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  ->  (KQ `  J )  e.  Top )
6 simplr 731 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  J  e.  Nrm )
71kqid 17435 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  F  e.  ( J  Cn  (KQ `  J ) ) )
87ad2antrr 706 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  F  e.  ( J  Cn  (KQ `  J ) ) )
9 simprl 732 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  z  e.  (KQ `  J ) )
10 cnima 17010 . . . . . 6  |-  ( ( F  e.  ( J  Cn  (KQ `  J
) )  /\  z  e.  (KQ `  J ) )  ->  ( `' F " z )  e.  J )
118, 9, 10syl2anc 642 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  ( `' F " z )  e.  J )
12 inss1 3402 . . . . . . 7  |-  ( (
Clsd `  (KQ `  J
) )  i^i  ~P z )  C_  ( Clsd `  (KQ `  J
) )
13 simprr 733 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) )
1412, 13sseldi 3191 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  w  e.  ( Clsd `  (KQ `  J
) ) )
15 cnclima 17013 . . . . . 6  |-  ( ( F  e.  ( J  Cn  (KQ `  J
) )  /\  w  e.  ( Clsd `  (KQ `  J ) ) )  ->  ( `' F " w )  e.  (
Clsd `  J )
)
168, 14, 15syl2anc 642 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  ( `' F " w )  e.  ( Clsd `  J
) )
17 inss2 3403 . . . . . . 7  |-  ( (
Clsd `  (KQ `  J
) )  i^i  ~P z )  C_  ~P z
1817, 13sseldi 3191 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  w  e.  ~P z )
19 elpwi 3646 . . . . . 6  |-  ( w  e.  ~P z  ->  w  C_  z )
20 imass2 5065 . . . . . 6  |-  ( w 
C_  z  ->  ( `' F " w ) 
C_  ( `' F " z ) )
2118, 19, 203syl 18 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  ( `' F " w )  C_  ( `' F " z ) )
22 nrmsep3 17099 . . . . 5  |-  ( ( J  e.  Nrm  /\  ( ( `' F " z )  e.  J  /\  ( `' F "
w )  e.  (
Clsd `  J )  /\  ( `' F "
w )  C_  ( `' F " z ) ) )  ->  E. u  e.  J  ( ( `' F " w ) 
C_  u  /\  (
( cls `  J
) `  u )  C_  ( `' F "
z ) ) )
236, 11, 16, 21, 22syl13anc 1184 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  E. u  e.  J  ( ( `' F " w ) 
C_  u  /\  (
( cls `  J
) `  u )  C_  ( `' F "
z ) ) )
24 simplll 734 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  J  e.  (TopOn `  X ) )
25 simprl 732 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  u  e.  J )
261kqopn 17441 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  u  e.  J )  ->  ( F " u )  e.  (KQ `  J ) )
2724, 25, 26syl2anc 642 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( F " u )  e.  (KQ
`  J ) )
28 simprrl 740 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( `' F " w )  C_  u )
291kqffn 17432 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
30 fnfun 5357 . . . . . . . . . 10  |-  ( F  Fn  X  ->  Fun  F )
3124, 29, 303syl 18 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  Fun  F )
3214adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  w  e.  ( Clsd `  (KQ `  J
) ) )
33 eqid 2296 . . . . . . . . . . . 12  |-  U. (KQ `  J )  =  U. (KQ `  J )
3433cldss 16782 . . . . . . . . . . 11  |-  ( w  e.  ( Clsd `  (KQ `  J ) )  ->  w  C_  U. (KQ `  J ) )
3532, 34syl 15 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  w  C_  U. (KQ `  J ) )
36 toponuni 16681 . . . . . . . . . . 11  |-  ( (KQ
`  J )  e.  (TopOn `  ran  F )  ->  ran  F  =  U. (KQ `  J ) )
3724, 2, 363syl 18 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ran  F  = 
U. (KQ `  J
) )
3835, 37sseqtr4d 3228 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  w  C_  ran  F )
39 funimass1 5341 . . . . . . . . 9  |-  ( ( Fun  F  /\  w  C_ 
ran  F )  -> 
( ( `' F " w )  C_  u  ->  w  C_  ( F " u ) ) )
4031, 38, 39syl2anc 642 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( ( `' F " w ) 
C_  u  ->  w  C_  ( F " u
) ) )
4128, 40mpd 14 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  w  C_  ( F " u ) )
42 topontop 16680 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
4324, 42syl 15 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  J  e.  Top )
44 elssuni 3871 . . . . . . . . . . . 12  |-  ( u  e.  J  ->  u  C_ 
U. J )
4544ad2antrl 708 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  u  C_  U. J
)
46 eqid 2296 . . . . . . . . . . . 12  |-  U. J  =  U. J
4746clscld 16800 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  u  C_  U. J )  ->  ( ( cls `  J ) `  u
)  e.  ( Clsd `  J ) )
4843, 45, 47syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( ( cls `  J ) `  u )  e.  (
Clsd `  J )
)
491kqcld 17442 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  (
( cls `  J
) `  u )  e.  ( Clsd `  J
) )  ->  ( F " ( ( cls `  J ) `  u
) )  e.  (
Clsd `  (KQ `  J
) ) )
5024, 48, 49syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( F " ( ( cls `  J
) `  u )
)  e.  ( Clsd `  (KQ `  J ) ) )
5146sscls 16809 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  u  C_  U. J )  ->  u  C_  (
( cls `  J
) `  u )
)
5243, 45, 51syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  u  C_  (
( cls `  J
) `  u )
)
53 imass2 5065 . . . . . . . . . 10  |-  ( u 
C_  ( ( cls `  J ) `  u
)  ->  ( F " u )  C_  ( F " ( ( cls `  J ) `  u
) ) )
5452, 53syl 15 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( F " u )  C_  ( F " ( ( cls `  J ) `  u
) ) )
5533clsss2 16825 . . . . . . . . 9  |-  ( ( ( F " (
( cls `  J
) `  u )
)  e.  ( Clsd `  (KQ `  J ) )  /\  ( F
" u )  C_  ( F " ( ( cls `  J ) `
 u ) ) )  ->  ( ( cls `  (KQ `  J
) ) `  ( F " u ) ) 
C_  ( F "
( ( cls `  J
) `  u )
) )
5650, 54, 55syl2anc 642 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( ( cls `  (KQ `  J
) ) `  ( F " u ) ) 
C_  ( F "
( ( cls `  J
) `  u )
) )
57 simprrr 741 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( ( cls `  J ) `  u )  C_  ( `' F " z ) )
5846clsss3 16812 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  u  C_  U. J )  ->  ( ( cls `  J ) `  u
)  C_  U. J )
5943, 45, 58syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( ( cls `  J ) `  u )  C_  U. J
)
60 fndm 5359 . . . . . . . . . . . . 13  |-  ( F  Fn  X  ->  dom  F  =  X )
6124, 29, 603syl 18 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  dom  F  =  X )
62 toponuni 16681 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
6324, 62syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  X  =  U. J )
6461, 63eqtrd 2328 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  dom  F  = 
U. J )
6559, 64sseqtr4d 3228 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( ( cls `  J ) `  u )  C_  dom  F )
66 funimass3 5657 . . . . . . . . . 10  |-  ( ( Fun  F  /\  (
( cls `  J
) `  u )  C_ 
dom  F )  -> 
( ( F "
( ( cls `  J
) `  u )
)  C_  z  <->  ( ( cls `  J ) `  u )  C_  ( `' F " z ) ) )
6731, 65, 66syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( ( F " ( ( cls `  J ) `  u
) )  C_  z  <->  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) )
6857, 67mpbird 223 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( F " ( ( cls `  J
) `  u )
)  C_  z )
6956, 68sstrd 3202 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( ( cls `  (KQ `  J
) ) `  ( F " u ) ) 
C_  z )
70 sseq2 3213 . . . . . . . . 9  |-  ( m  =  ( F "
u )  ->  (
w  C_  m  <->  w  C_  ( F " u ) ) )
71 fveq2 5541 . . . . . . . . . 10  |-  ( m  =  ( F "
u )  ->  (
( cls `  (KQ `  J ) ) `  m )  =  ( ( cls `  (KQ `  J ) ) `  ( F " u ) ) )
7271sseq1d 3218 . . . . . . . . 9  |-  ( m  =  ( F "
u )  ->  (
( ( cls `  (KQ `  J ) ) `  m )  C_  z  <->  ( ( cls `  (KQ `  J ) ) `  ( F " u ) )  C_  z )
)
7370, 72anbi12d 691 . . . . . . . 8  |-  ( m  =  ( F "
u )  ->  (
( w  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  z
)  <->  ( w  C_  ( F " u )  /\  ( ( cls `  (KQ `  J ) ) `  ( F
" u ) ) 
C_  z ) ) )
7473rspcev 2897 . . . . . . 7  |-  ( ( ( F " u
)  e.  (KQ `  J )  /\  (
w  C_  ( F " u )  /\  (
( cls `  (KQ `  J ) ) `  ( F " u ) )  C_  z )
)  ->  E. m  e.  (KQ `  J ) ( w  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  z
) )
7527, 41, 69, 74syl12anc 1180 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  E. m  e.  (KQ `  J ) ( w  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  z
) )
7675expr 598 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  u  e.  J )  ->  (
( ( `' F " w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) )  ->  E. m  e.  (KQ `  J ) ( w 
C_  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  z
) ) )
7776rexlimdva 2680 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  ( E. u  e.  J  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) )  ->  E. m  e.  (KQ `  J ) ( w 
C_  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  z
) ) )
7823, 77mpd 14 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  E. m  e.  (KQ `  J ) ( w  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  z
) )
7978ralrimivva 2648 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  ->  A. z  e.  (KQ `  J ) A. w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) E. m  e.  (KQ `  J ) ( w 
C_  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  z
) )
80 isnrm 17079 . 2  |-  ( (KQ
`  J )  e. 
Nrm 
<->  ( (KQ `  J
)  e.  Top  /\  A. z  e.  (KQ `  J ) A. w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) E. m  e.  (KQ `  J ) ( w 
C_  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  z
) ) )
815, 79, 80sylanbrc 645 1  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  ->  (KQ `  J )  e.  Nrm )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   {crab 2560    i^i cin 3164    C_ wss 3165   ~Pcpw 3638   U.cuni 3843    e. cmpt 4093   `'ccnv 4704   dom cdm 4705   ran crn 4706   "cima 4708   Fun wfun 5265    Fn wfn 5266   ` cfv 5271  (class class class)co 5874   Topctop 16647  TopOnctopon 16648   Clsdccld 16769   clsccl 16771    Cn ccn 16970   Nrmcnrm 17054  KQckq 17400
This theorem is referenced by:  kqnrm  17459
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-map 6790  df-qtop 13426  df-top 16652  df-topon 16655  df-cld 16772  df-cls 16774  df-cn 16973  df-nrm 17061  df-kq 17401
  Copyright terms: Public domain W3C validator