MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqnrmlem2 Structured version   Unicode version

Theorem kqnrmlem2 17781
Description: If the Kolmogorov quotient of a space is normal then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
kqnrmlem2  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  ->  J  e.  Nrm )
Distinct variable groups:    x, y, J    x, X, y
Allowed substitution hints:    F( x, y)

Proof of Theorem kqnrmlem2
Dummy variables  m  w  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 16996 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
21adantr 453 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  ->  J  e.  Top )
3 simplr 733 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  -> 
(KQ `  J )  e.  Nrm )
4 simpll 732 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  ->  J  e.  (TopOn `  X
) )
5 simprl 734 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  -> 
z  e.  J )
6 kqval.2 . . . . . . 7  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
76kqopn 17771 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  J )  ->  ( F " z )  e.  (KQ `  J ) )
84, 5, 7syl2anc 644 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  -> 
( F " z
)  e.  (KQ `  J ) )
9 inss1 3563 . . . . . . 7  |-  ( (
Clsd `  J )  i^i  ~P z )  C_  ( Clsd `  J )
10 simprr 735 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  ->  w  e.  ( ( Clsd `  J )  i^i 
~P z ) )
119, 10sseldi 3348 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  ->  w  e.  ( Clsd `  J ) )
126kqcld 17772 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  w  e.  ( Clsd `  J
) )  ->  ( F " w )  e.  ( Clsd `  (KQ `  J ) ) )
134, 11, 12syl2anc 644 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  -> 
( F " w
)  e.  ( Clsd `  (KQ `  J ) ) )
14 inss2 3564 . . . . . . 7  |-  ( (
Clsd `  J )  i^i  ~P z )  C_  ~P z
1514, 10sseldi 3348 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  ->  w  e.  ~P z
)
16 elpwi 3809 . . . . . 6  |-  ( w  e.  ~P z  ->  w  C_  z )
17 imass2 5243 . . . . . 6  |-  ( w 
C_  z  ->  ( F " w )  C_  ( F " z ) )
1815, 16, 173syl 19 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  -> 
( F " w
)  C_  ( F " z ) )
19 nrmsep3 17424 . . . . 5  |-  ( ( (KQ `  J )  e.  Nrm  /\  (
( F " z
)  e.  (KQ `  J )  /\  ( F " w )  e.  ( Clsd `  (KQ `  J ) )  /\  ( F " w ) 
C_  ( F "
z ) ) )  ->  E. m  e.  (KQ
`  J ) ( ( F " w
)  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  ( F " z ) ) )
203, 8, 13, 18, 19syl13anc 1187 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  ->  E. m  e.  (KQ `  J ) ( ( F " w ) 
C_  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  ( F " z ) ) )
21 simplll 736 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  J  e.  (TopOn `  X ) )
226kqid 17765 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  F  e.  ( J  Cn  (KQ `  J ) ) )
2321, 22syl 16 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  F  e.  ( J  Cn  (KQ `  J ) ) )
24 simprl 734 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  m  e.  (KQ `  J ) )
25 cnima 17334 . . . . . 6  |-  ( ( F  e.  ( J  Cn  (KQ `  J
) )  /\  m  e.  (KQ `  J ) )  ->  ( `' F " m )  e.  J )
2623, 24, 25syl2anc 644 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( `' F " m )  e.  J )
27 simprrl 742 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( F " w )  C_  m
)
286kqffn 17762 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
29 fnfun 5545 . . . . . . . 8  |-  ( F  Fn  X  ->  Fun  F )
3021, 28, 293syl 19 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  Fun  F )
3111adantr 453 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  w  e.  ( Clsd `  J )
)
32 eqid 2438 . . . . . . . . . 10  |-  U. J  =  U. J
3332cldss 17098 . . . . . . . . 9  |-  ( w  e.  ( Clsd `  J
)  ->  w  C_  U. J
)
3431, 33syl 16 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  w  C_  U. J
)
35 fndm 5547 . . . . . . . . . 10  |-  ( F  Fn  X  ->  dom  F  =  X )
3621, 28, 353syl 19 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  dom  F  =  X )
37 toponuni 16997 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
3821, 37syl 16 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  X  =  U. J )
3936, 38eqtrd 2470 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  dom  F  = 
U. J )
4034, 39sseqtr4d 3387 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  w  C_  dom  F )
41 funimass3 5849 . . . . . . 7  |-  ( ( Fun  F  /\  w  C_ 
dom  F )  -> 
( ( F "
w )  C_  m  <->  w 
C_  ( `' F " m ) ) )
4230, 40, 41syl2anc 644 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( ( F " w )  C_  m 
<->  w  C_  ( `' F " m ) ) )
4327, 42mpbid 203 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  w  C_  ( `' F " m ) )
446kqtopon 17764 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  (KQ `  J
)  e.  (TopOn `  ran  F ) )
45 topontop 16996 . . . . . . . . . 10  |-  ( (KQ
`  J )  e.  (TopOn `  ran  F )  ->  (KQ `  J
)  e.  Top )
4621, 44, 453syl 19 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  (KQ `  J
)  e.  Top )
47 elssuni 4045 . . . . . . . . . 10  |-  ( m  e.  (KQ `  J
)  ->  m  C_  U. (KQ `  J ) )
4847ad2antrl 710 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  m  C_  U. (KQ `  J ) )
49 eqid 2438 . . . . . . . . . 10  |-  U. (KQ `  J )  =  U. (KQ `  J )
5049clscld 17116 . . . . . . . . 9  |-  ( ( (KQ `  J )  e.  Top  /\  m  C_ 
U. (KQ `  J
) )  ->  (
( cls `  (KQ `  J ) ) `  m )  e.  (
Clsd `  (KQ `  J
) ) )
5146, 48, 50syl2anc 644 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( ( cls `  (KQ `  J
) ) `  m
)  e.  ( Clsd `  (KQ `  J ) ) )
52 cnclima 17337 . . . . . . . 8  |-  ( ( F  e.  ( J  Cn  (KQ `  J
) )  /\  (
( cls `  (KQ `  J ) ) `  m )  e.  (
Clsd `  (KQ `  J
) ) )  -> 
( `' F "
( ( cls `  (KQ `  J ) ) `  m ) )  e.  ( Clsd `  J
) )
5323, 51, 52syl2anc 644 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( `' F " ( ( cls `  (KQ `  J ) ) `  m ) )  e.  ( Clsd `  J ) )
5449sscls 17125 . . . . . . . . 9  |-  ( ( (KQ `  J )  e.  Top  /\  m  C_ 
U. (KQ `  J
) )  ->  m  C_  ( ( cls `  (KQ `  J ) ) `  m ) )
5546, 48, 54syl2anc 644 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  m  C_  (
( cls `  (KQ `  J ) ) `  m ) )
56 imass2 5243 . . . . . . . 8  |-  ( m 
C_  ( ( cls `  (KQ `  J ) ) `  m )  ->  ( `' F " m )  C_  ( `' F " ( ( cls `  (KQ `  J ) ) `  m ) ) )
5755, 56syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( `' F " m )  C_  ( `' F " ( ( cls `  (KQ `  J ) ) `  m ) ) )
5832clsss2 17141 . . . . . . 7  |-  ( ( ( `' F "
( ( cls `  (KQ `  J ) ) `  m ) )  e.  ( Clsd `  J
)  /\  ( `' F " m )  C_  ( `' F " ( ( cls `  (KQ `  J ) ) `  m ) ) )  ->  ( ( cls `  J ) `  ( `' F " m ) )  C_  ( `' F " ( ( cls `  (KQ `  J ) ) `  m ) ) )
5953, 57, 58syl2anc 644 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( ( cls `  J ) `  ( `' F " m ) )  C_  ( `' F " ( ( cls `  (KQ `  J ) ) `  m ) ) )
60 simprrr 743 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( ( cls `  (KQ `  J
) ) `  m
)  C_  ( F " z ) )
61 imass2 5243 . . . . . . . 8  |-  ( ( ( cls `  (KQ `  J ) ) `  m )  C_  ( F " z )  -> 
( `' F "
( ( cls `  (KQ `  J ) ) `  m ) )  C_  ( `' F " ( F
" z ) ) )
6260, 61syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( `' F " ( ( cls `  (KQ `  J ) ) `  m ) )  C_  ( `' F " ( F "
z ) ) )
635adantr 453 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  z  e.  J )
646kqsat 17768 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  J )  ->  ( `' F " ( F
" z ) )  =  z )
6521, 63, 64syl2anc 644 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( `' F " ( F "
z ) )  =  z )
6662, 65sseqtrd 3386 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( `' F " ( ( cls `  (KQ `  J ) ) `  m ) )  C_  z )
6759, 66sstrd 3360 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  ( ( cls `  J ) `  ( `' F " m ) )  C_  z )
68 sseq2 3372 . . . . . . 7  |-  ( u  =  ( `' F " m )  ->  (
w  C_  u  <->  w  C_  ( `' F " m ) ) )
69 fveq2 5731 . . . . . . . 8  |-  ( u  =  ( `' F " m )  ->  (
( cls `  J
) `  u )  =  ( ( cls `  J ) `  ( `' F " m ) ) )
7069sseq1d 3377 . . . . . . 7  |-  ( u  =  ( `' F " m )  ->  (
( ( cls `  J
) `  u )  C_  z  <->  ( ( cls `  J ) `  ( `' F " m ) )  C_  z )
)
7168, 70anbi12d 693 . . . . . 6  |-  ( u  =  ( `' F " m )  ->  (
( w  C_  u  /\  ( ( cls `  J
) `  u )  C_  z )  <->  ( w  C_  ( `' F "
m )  /\  (
( cls `  J
) `  ( `' F " m ) ) 
C_  z ) ) )
7271rspcev 3054 . . . . 5  |-  ( ( ( `' F "
m )  e.  J  /\  ( w  C_  ( `' F " m )  /\  ( ( cls `  J ) `  ( `' F " m ) )  C_  z )
)  ->  E. u  e.  J  ( w  C_  u  /\  ( ( cls `  J ) `
 u )  C_  z ) )
7326, 43, 67, 72syl12anc 1183 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  (
( Clsd `  J )  i^i  ~P z ) ) )  /\  ( m  e.  (KQ `  J
)  /\  ( ( F " w )  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m ) 
C_  ( F "
z ) ) ) )  ->  E. u  e.  J  ( w  C_  u  /\  ( ( cls `  J ) `
 u )  C_  z ) )
7420, 73rexlimddv 2836 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  /\  ( z  e.  J  /\  w  e.  ( ( Clsd `  J
)  i^i  ~P z
) ) )  ->  E. u  e.  J  ( w  C_  u  /\  ( ( cls `  J
) `  u )  C_  z ) )
7574ralrimivva 2800 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  ->  A. z  e.  J  A. w  e.  (
( Clsd `  J )  i^i  ~P z ) E. u  e.  J  ( w  C_  u  /\  ( ( cls `  J
) `  u )  C_  z ) )
76 isnrm 17404 . 2  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. z  e.  J  A. w  e.  ( ( Clsd `  J
)  i^i  ~P z
) E. u  e.  J  ( w  C_  u  /\  ( ( cls `  J ) `  u
)  C_  z )
) )
772, 75, 76sylanbrc 647 1  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Nrm )  ->  J  e.  Nrm )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   {crab 2711    i^i cin 3321    C_ wss 3322   ~Pcpw 3801   U.cuni 4017    e. cmpt 4269   `'ccnv 4880   dom cdm 4881   ran crn 4882   "cima 4884   Fun wfun 5451    Fn wfn 5452   ` cfv 5457  (class class class)co 6084   Topctop 16963  TopOnctopon 16964   Clsdccld 17085   clsccl 17087    Cn ccn 17293   Nrmcnrm 17379  KQckq 17730
This theorem is referenced by:  kqnrm  17789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-map 7023  df-qtop 13738  df-top 16968  df-topon 16971  df-cld 17088  df-cls 17090  df-cn 17296  df-nrm 17386  df-kq 17731
  Copyright terms: Public domain W3C validator