MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqsat Unicode version

Theorem kqsat 17684
Description: Any open set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest 17670). (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
kqsat  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  ( `' F " ( F
" U ) )  =  U )
Distinct variable groups:    x, y, J    x, X, y
Allowed substitution hints:    U( x, y)    F( x, y)

Proof of Theorem kqsat
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . 7  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
21kqffn 17678 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
3 elpreima 5789 . . . . . 6  |-  ( F  Fn  X  ->  (
z  e.  ( `' F " ( F
" U ) )  <-> 
( z  e.  X  /\  ( F `  z
)  e.  ( F
" U ) ) ) )
42, 3syl 16 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  ( z  e.  ( `' F "
( F " U
) )  <->  ( z  e.  X  /\  ( F `  z )  e.  ( F " U
) ) ) )
54adantr 452 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  (
z  e.  ( `' F " ( F
" U ) )  <-> 
( z  e.  X  /\  ( F `  z
)  e.  ( F
" U ) ) ) )
61kqfvima 17683 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  z  e.  X )  ->  (
z  e.  U  <->  ( F `  z )  e.  ( F " U ) ) )
763expa 1153 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  /\  z  e.  X )  ->  (
z  e.  U  <->  ( F `  z )  e.  ( F " U ) ) )
87biimprd 215 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  /\  z  e.  X )  ->  (
( F `  z
)  e.  ( F
" U )  -> 
z  e.  U ) )
98expimpd 587 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  (
( z  e.  X  /\  ( F `  z
)  e.  ( F
" U ) )  ->  z  e.  U
) )
105, 9sylbid 207 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  (
z  e.  ( `' F " ( F
" U ) )  ->  z  e.  U
) )
1110ssrdv 3297 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  ( `' F " ( F
" U ) ) 
C_  U )
12 toponss 16917 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  U  C_  X )
13 fndm 5484 . . . . . . 7  |-  ( F  Fn  X  ->  dom  F  =  X )
142, 13syl 16 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  dom  F  =  X )
1514adantr 452 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  dom  F  =  X )
1612, 15sseqtr4d 3328 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  U  C_ 
dom  F )
17 dfss1 3488 . . . 4  |-  ( U 
C_  dom  F  <->  ( dom  F  i^i  U )  =  U )
1816, 17sylib 189 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  ( dom  F  i^i  U )  =  U )
19 dminss 5226 . . 3  |-  ( dom 
F  i^i  U )  C_  ( `' F "
( F " U
) )
2018, 19syl6eqssr 3342 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  U  C_  ( `' F "
( F " U
) ) )
2111, 20eqssd 3308 1  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  ( `' F " ( F
" U ) )  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   {crab 2653    i^i cin 3262    C_ wss 3263    e. cmpt 4207   `'ccnv 4817   dom cdm 4818   "cima 4821    Fn wfn 5389   ` cfv 5394  TopOnctopon 16882
This theorem is referenced by:  kqopn  17687  kqreglem2  17695  kqnrmlem2  17697
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-fv 5402  df-topon 16889
  Copyright terms: Public domain W3C validator