Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem8 Structured version   Unicode version

Theorem kur14lem8 24900
Description: Lemma for kur14 24903. Show that the set  T contains at most  1
4 elements. (It could be less if some of the operators take the same value for a given set, but Kuratowski showed that this upper bound of  1 4 is tight in the sense that there exist topological spaces and subsets of these spaces for which all  1 4 generated sets are distinct, and indeed the real numbers form such a topological space.) (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j  |-  J  e. 
Top
kur14lem.x  |-  X  = 
U. J
kur14lem.k  |-  K  =  ( cls `  J
)
kur14lem.i  |-  I  =  ( int `  J
)
kur14lem.a  |-  A  C_  X
kur14lem.b  |-  B  =  ( X  \  ( K `  A )
)
kur14lem.c  |-  C  =  ( K `  ( X  \  A ) )
kur14lem.d  |-  D  =  ( I `  ( K `  A )
)
kur14lem.t  |-  T  =  ( ( ( { A ,  ( X 
\  A ) ,  ( K `  A
) }  u.  { B ,  C , 
( I `  A
) } )  u. 
{ ( K `  B ) ,  D ,  ( K `  ( I `  A
) ) } )  u.  ( { ( I `  C ) ,  ( K `  D ) ,  ( I `  ( K `
 B ) ) }  u.  { ( K `  ( I `
 C ) ) ,  ( I `  ( K `  ( I `
 A ) ) ) } ) )
Assertion
Ref Expression
kur14lem8  |-  ( T  e.  Fin  /\  ( # `
 T )  <_ ; 1 4 )

Proof of Theorem kur14lem8
StepHypRef Expression
1 kur14lem.t . 2  |-  T  =  ( ( ( { A ,  ( X 
\  A ) ,  ( K `  A
) }  u.  { B ,  C , 
( I `  A
) } )  u. 
{ ( K `  B ) ,  D ,  ( K `  ( I `  A
) ) } )  u.  ( { ( I `  C ) ,  ( K `  D ) ,  ( I `  ( K `
 B ) ) }  u.  { ( K `  ( I `
 C ) ) ,  ( I `  ( K `  ( I `
 A ) ) ) } ) )
2 eqid 2437 . . 3  |-  ( ( { A ,  ( X  \  A ) ,  ( K `  A ) }  u.  { B ,  C , 
( I `  A
) } )  u. 
{ ( K `  B ) ,  D ,  ( K `  ( I `  A
) ) } )  =  ( ( { A ,  ( X 
\  A ) ,  ( K `  A
) }  u.  { B ,  C , 
( I `  A
) } )  u. 
{ ( K `  B ) ,  D ,  ( K `  ( I `  A
) ) } )
3 eqid 2437 . . . 4  |-  ( { A ,  ( X 
\  A ) ,  ( K `  A
) }  u.  { B ,  C , 
( I `  A
) } )  =  ( { A , 
( X  \  A
) ,  ( K `
 A ) }  u.  { B ,  C ,  ( I `  A ) } )
4 hashtplei 11691 . . . 4  |-  ( { A ,  ( X 
\  A ) ,  ( K `  A
) }  e.  Fin  /\  ( # `  { A ,  ( X  \  A ) ,  ( K `  A ) } )  <_  3
)
5 hashtplei 11691 . . . 4  |-  ( { B ,  C , 
( I `  A
) }  e.  Fin  /\  ( # `  { B ,  C , 
( I `  A
) } )  <_ 
3 )
6 3nn0 10240 . . . 4  |-  3  e.  NN0
7 3p3e6 10113 . . . 4  |-  ( 3  +  3 )  =  6
83, 4, 5, 6, 6, 7hashunlei 11685 . . 3  |-  ( ( { A ,  ( X  \  A ) ,  ( K `  A ) }  u.  { B ,  C , 
( I `  A
) } )  e. 
Fin  /\  ( # `  ( { A ,  ( X 
\  A ) ,  ( K `  A
) }  u.  { B ,  C , 
( I `  A
) } ) )  <_  6 )
9 hashtplei 11691 . . 3  |-  ( { ( K `  B
) ,  D , 
( K `  (
I `  A )
) }  e.  Fin  /\  ( # `  {
( K `  B
) ,  D , 
( K `  (
I `  A )
) } )  <_ 
3 )
10 6nn0 10243 . . 3  |-  6  e.  NN0
11 6p3e9 10122 . . 3  |-  ( 6  +  3 )  =  9
122, 8, 9, 10, 6, 11hashunlei 11685 . 2  |-  ( ( ( { A , 
( X  \  A
) ,  ( K `
 A ) }  u.  { B ,  C ,  ( I `  A ) } )  u.  { ( K `
 B ) ,  D ,  ( K `
 ( I `  A ) ) } )  e.  Fin  /\  ( # `  ( ( { A ,  ( X  \  A ) ,  ( K `  A ) }  u.  { B ,  C , 
( I `  A
) } )  u. 
{ ( K `  B ) ,  D ,  ( K `  ( I `  A
) ) } ) )  <_  9 )
13 eqid 2437 . . 3  |-  ( { ( I `  C
) ,  ( K `
 D ) ,  ( I `  ( K `  B )
) }  u.  {
( K `  (
I `  C )
) ,  ( I `
 ( K `  ( I `  A
) ) ) } )  =  ( { ( I `  C
) ,  ( K `
 D ) ,  ( I `  ( K `  B )
) }  u.  {
( K `  (
I `  C )
) ,  ( I `
 ( K `  ( I `  A
) ) ) } )
14 hashtplei 11691 . . 3  |-  ( { ( I `  C
) ,  ( K `
 D ) ,  ( I `  ( K `  B )
) }  e.  Fin  /\  ( # `  {
( I `  C
) ,  ( K `
 D ) ,  ( I `  ( K `  B )
) } )  <_ 
3 )
15 hashprlei 11687 . . 3  |-  ( { ( K `  (
I `  C )
) ,  ( I `
 ( K `  ( I `  A
) ) ) }  e.  Fin  /\  ( # `
 { ( K `
 ( I `  C ) ) ,  ( I `  ( K `  ( I `  A ) ) ) } )  <_  2
)
16 2nn0 10239 . . 3  |-  2  e.  NN0
17 3p2e5 10112 . . 3  |-  ( 3  +  2 )  =  5
1813, 14, 15, 6, 16, 17hashunlei 11685 . 2  |-  ( ( { ( I `  C ) ,  ( K `  D ) ,  ( I `  ( K `  B ) ) }  u.  {
( K `  (
I `  C )
) ,  ( I `
 ( K `  ( I `  A
) ) ) } )  e.  Fin  /\  ( # `  ( { ( I `  C
) ,  ( K `
 D ) ,  ( I `  ( K `  B )
) }  u.  {
( K `  (
I `  C )
) ,  ( I `
 ( K `  ( I `  A
) ) ) } ) )  <_  5
)
19 9nn0 10246 . 2  |-  9  e.  NN0
20 5nn0 10242 . 2  |-  5  e.  NN0
21 9p5e14 10448 . 2  |-  ( 9  +  5 )  = ; 1
4
221, 12, 18, 19, 20, 21hashunlei 11685 1  |-  ( T  e.  Fin  /\  ( # `
 T )  <_ ; 1 4 )
Colors of variables: wff set class
Syntax hints:    /\ wa 360    = wceq 1653    e. wcel 1726    \ cdif 3318    u. cun 3319    C_ wss 3321   {cpr 3816   {ctp 3817   U.cuni 4016   class class class wbr 4213   ` cfv 5455   Fincfn 7110   1c1 8992    <_ cle 9122   2c2 10050   3c3 10051   4c4 10052   5c5 10053   6c6 10054   9c9 10057  ;cdc 10383   #chash 11619   Topctop 16959   intcnt 17082   clsccl 17083
This theorem is referenced by:  kur14lem9  24901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-1o 6725  df-oadd 6729  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-card 7827  df-cda 8049  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-nn 10002  df-2 10059  df-3 10060  df-4 10061  df-5 10062  df-6 10063  df-7 10064  df-8 10065  df-9 10066  df-10 10067  df-n0 10223  df-z 10284  df-dec 10384  df-uz 10490  df-fz 11045  df-hash 11620
  Copyright terms: Public domain W3C validator