Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  labss1 Unicode version

Theorem labss1 25189
Description: Absorption law.  ( P  /\  ( P  \/  Q ) )  =  P. (Contributed by FL, 12-Dec-2009.)
Hypothesis
Ref Expression
jop1  |-  X  =  dom  dom  J
Assertion
Ref Expression
labss1  |-  ( ( J  e.  A  /\  M  e.  B  /\  <. J ,  M >.  e. 
LatAlg )  ->  ( ( P  e.  X  /\  Q  e.  X )  ->  ( P M ( P J Q ) )  =  P ) )

Proof of Theorem labss1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 jop1 . . 3  |-  X  =  dom  dom  J
21labs1 25188 . 2  |-  ( ( J  e.  A  /\  M  e.  B  /\  <. J ,  M >.  e. 
LatAlg )  ->  A. x  e.  X  A. y  e.  X  ( x M ( x J y ) )  =  x )
3 id 19 . . . . 5  |-  ( x  =  P  ->  x  =  P )
4 oveq1 5865 . . . . 5  |-  ( x  =  P  ->  (
x J y )  =  ( P J y ) )
53, 4oveq12d 5876 . . . 4  |-  ( x  =  P  ->  (
x M ( x J y ) )  =  ( P M ( P J y ) ) )
65, 3eqeq12d 2297 . . 3  |-  ( x  =  P  ->  (
( x M ( x J y ) )  =  x  <->  ( P M ( P J y ) )  =  P ) )
7 oveq2 5866 . . . . 5  |-  ( y  =  Q  ->  ( P J y )  =  ( P J Q ) )
87oveq2d 5874 . . . 4  |-  ( y  =  Q  ->  ( P M ( P J y ) )  =  ( P M ( P J Q ) ) )
98eqeq1d 2291 . . 3  |-  ( y  =  Q  ->  (
( P M ( P J y ) )  =  P  <->  ( P M ( P J Q ) )  =  P ) )
106, 9rspc2v 2890 . 2  |-  ( ( P  e.  X  /\  Q  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  ( x M ( x J y ) )  =  x  ->  ( P M ( P J Q ) )  =  P ) )
112, 10syl5com 26 1  |-  ( ( J  e.  A  /\  M  e.  B  /\  <. J ,  M >.  e. 
LatAlg )  ->  ( ( P  e.  X  /\  Q  e.  X )  ->  ( P M ( P J Q ) )  =  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   <.cop 3643   dom cdm 4689  (class class class)co 5858   LatAlgclatalg 25181
This theorem is referenced by:  jidd  25192  midd  25193
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-latalg 25182
  Copyright terms: Public domain W3C validator