Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  labss2 Unicode version

Theorem labss2 25294
Description: Absorption law.  ( P  \/  ( P  /\  Q ) )  =  P. (Contributed by FL, 12-Dec-2009.)
Hypothesis
Ref Expression
jop1  |-  X  =  dom  dom  J
Assertion
Ref Expression
labss2  |-  ( ( J  e.  A  /\  M  e.  B  /\  <. J ,  M >.  e. 
LatAlg )  ->  ( ( P  e.  X  /\  Q  e.  X )  ->  ( P J ( P M Q ) )  =  P ) )

Proof of Theorem labss2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 jop1 . . 3  |-  X  =  dom  dom  J
21labs2 25293 . 2  |-  ( ( J  e.  A  /\  M  e.  B  /\  <. J ,  M >.  e. 
LatAlg )  ->  A. x  e.  X  A. y  e.  X  ( x J ( x M y ) )  =  x )
3 id 19 . . . . 5  |-  ( x  =  P  ->  x  =  P )
4 oveq1 5881 . . . . 5  |-  ( x  =  P  ->  (
x M y )  =  ( P M y ) )
53, 4oveq12d 5892 . . . 4  |-  ( x  =  P  ->  (
x J ( x M y ) )  =  ( P J ( P M y ) ) )
65, 3eqeq12d 2310 . . 3  |-  ( x  =  P  ->  (
( x J ( x M y ) )  =  x  <->  ( P J ( P M y ) )  =  P ) )
7 oveq2 5882 . . . . 5  |-  ( y  =  Q  ->  ( P M y )  =  ( P M Q ) )
87oveq2d 5890 . . . 4  |-  ( y  =  Q  ->  ( P J ( P M y ) )  =  ( P J ( P M Q ) ) )
98eqeq1d 2304 . . 3  |-  ( y  =  Q  ->  (
( P J ( P M y ) )  =  P  <->  ( P J ( P M Q ) )  =  P ) )
106, 9rspc2v 2903 . 2  |-  ( ( P  e.  X  /\  Q  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  ( x J ( x M y ) )  =  x  ->  ( P J ( P M Q ) )  =  P ) )
112, 10syl5com 26 1  |-  ( ( J  e.  A  /\  M  e.  B  /\  <. J ,  M >.  e. 
LatAlg )  ->  ( ( P  e.  X  /\  Q  e.  X )  ->  ( P J ( P M Q ) )  =  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   <.cop 3656   dom cdm 4705  (class class class)co 5874   LatAlgclatalg 25284
This theorem is referenced by:  jidd  25295  midd  25296
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-latalg 25285
  Copyright terms: Public domain W3C validator